## **TUE-PO1-606-09**

# Resistances between soldered YBCO tapes consisting of the stacked cable

## bstraci

In order to clarify the electromagnetic properties of a conductor made of laminated YBCO tapes, we report the results of investigating the effect of solder connections on the resistance between the tapes. YBCO laminated conductors are being researched and developed as candidates for large 100 kA class conductors for nuclear fusion. In order to quantitatively understand the electromagnetic properties of such conductors, such as the rolling current and coupling loss characteristics, it is important to accurately evaluate the inter-tape contact resistance. In this study, the inter-tape coupling loss of a conductor consisting of 50 stacked wires was measured in liquid nitrogen. Two types of measurement samples were used, one with soldered inter-tape connections and the other without. For the solder-connected samples, solder-plated copper laminated wires were laminated, and the entire sample was fixed with copper tape and then impregnated with solder. For the unsoldered samples, the copper laminated wires were laminated in air and fixed with polyimide tape. The sample was about 100 mm long without twisting, and the measurement was conducted under the condition that the coupling current flowed over the entire length of the sample. The inter-tape resistance is estimated from the comparison between the measured and theoretical analysis of the coupling loss, and the effect of the solder connection is discussed.

| coupling time constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |                                  |                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------|
| $\begin{array}{c c} y & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ | $W_{c} = 2 \int_{0}^{\frac{L_{c}}{2}} 2gd^{2}\dot{B}^{2}x^{2} dx$ $= A^{*}\tau\mu_{0}\dot{H}_{e}^{2}$ $\dot{B}^{2}x^{2}  A^{*}\tau = \frac{W_{c}}{\mu_{0}\dot{H}_{e}^{2}}$ |                                  | oss-sectional shape<br>e constant [s]<br>y in vacuum                  |
| Measurement sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wire                                                                                                                                                                       | e type : YBCO                    |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            | soldered                         | Not soldered                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample width [mm]                                                                                                                                                          | 6                                | 6.25                                                                  |
| Fig1. Soldered model conductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample thickness [mm]                                                                                                                                                      |                                  | 5.65                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample length [mm]                                                                                                                                                         | 96                               | 100                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of wires [wires]                                                                                                                                                    | 50                               | 50                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ic of wire [A]                                                                                                                                                             | 200                              | 250                                                                   |
| Fig2. Not Soldered model conduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Or Refrigerant                                                                                                                                                             | Liquid nitrogen                  |                                                                       |
| Measurement method <pick-up coil="" method=""> The pick-up coil surrounds the whole sa The roles of the cancel-coil are the following The one is canceling the inductive component the voltage of the pick-up coil, and the other the detection of the external magnetic field. The magnetic field dependences The amplitude of the magnetic field was to 797mT. The frequency dependencies were measure The frequency was up to 360 Hz.</pick-up>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g two:<br>ent of<br>her is<br>up<br>Fig. 2 Pick-up coil ar                                                                                                                 | rangements for<br>nple of the me | ample( $7 \times 6$ mm)<br>14.2mm<br>r measuring ac<br>odel conductor |

#### Kodai YOSHIMO, Yuma UENO, Akifumi KAWAGOE(Kagoshima University) Tetsuhiro OBANA (NIFS), Makoto TAKAYASU(MIT)

Fig. 3 Measured ac loss properties. The angles are formed by the applied magnetic field and the flat face of the tape. is between magnetic fields and the tape face.



Fig. 5 Frequency dependencies of the coupling losses. Red and blue plots represent the coupling losses in the soldered and not soldered Fig.6 Coupling loss time-constants vs inter-tape resistances

samples.



Hysteresis losses without frequency dependencies were observed. This cause is that tapes were tilted and curved (see Fig. 2). The measured losses separate into hysteresis losses and coupling losses. Triangle and circle plots represent hysteresis and coupling losses, respectively.



Inter-tape resistances were estimated 8 x 10<sup>-10</sup>  $\Omega$ m<sup>2</sup> and 9 x 10<sup>-7</sup>  $\Omega$ m<sup>2</sup> for the soldered and the no soldered samples, respectively. In the soldered sample, inter-tape resistances decrease to 3 orders smaller than that of the no soldered

#### Conclusion

Ac losses in the stacked YBCO tapes conductors with and without soldered were measured, and evaluated inter-tape resistances from coupling loss properties. The inter-tape resistances of the soldered and no soldered samples were evaluated 8 x 10<sup>-10</sup> Wm<sup>2</sup> and 9 x 10<sup>-7</sup> Wm<sup>2</sup>, respectively.

The inter-tape resistances were reduced by about three orders of magnitude with the solder connection.