

Contribution ID: 863 Contribution code: WED-PO2-610-08

Type: Poster

Use of Critical Current Distribution Measurements in Bi-2212 Round Wires as a tool to significantly enhance and stabilize the J_c properties

Wednesday, 17 November 2021 10:30 (20 minutes)

Bi-2212 conductor is now a serious candidate for HEP, NMR, and other ultra-high field magnet applications since our demonstration that 50 bar over-pressure heat treatment (OPHT) is reliable and predictable for many coil reactions. As more magnet designs are generated, predictable and consistent critical current density (J_c) values are important too. In fact there are still J_c uncertainties of order 30-40\% that we ascribe to a still poorly understood convolution of powder quality, filament uniformity and the OPHT itself. We here report an extensive study of the critical current distributions in \sim 1 m long wires made by B-OST derived from d^2V/dI^2 analyses of the V-I curves measured on ITER-like barrels. These transitions can be well fitted by Gaussian distributions and characterized by their relative standard deviations σ/μ . We find that recent Engi-Mat powder wires made by B-OST have significantly higher J_c and lower σ/μ than found in earlier B-OST wires made with Nexans or SCI powders. We also find that the highest J_c values provided by minimum $T_{\rm max}$ and minimum time in the melt ($t_{\rm melt}$) during OPHT also correspond to significantly lower σ/μ values. We attribute this property degradation with higher T_{max} to a loss of filament connectivity associated with worsening texture associated with filament merging during the melt step of the OPHT. We will report d^2V/dI^2 evaluations of many multifilament Bi-2212 wires made over the last decade and seek to deconvolute powder and filament quality effects from OPHT variations. A huge advantage of B-OST wires is that they can be made in continuous lengths of > 1 km at 1 mm diameter. We believe that such I_c distribution measurements may also be an important quality control tool to apply to lead-in and lead-out ends of coil windings.

Primary authors: BARUA, Shaon (ASC-FSU-NHMFL); DAVIS, Daniel (FSU/NHMFL); Mr OZ, Yavuz (ASC, FSU, NHMFL); JIANG, Jianyi (Florida State University); KIM, Youngjae (National High Magnetic Field Laboratory); BOSQUE, Ernesto (National High Magnetic Field Laboratory); HELLSTROM, Eric (Florida); TROCIEWITZ, Ulf (NHMFL); LARBALESTIER, David (National High Magnetic Field Laboratory)

Presenter: BARUA, Shaon (ASC-FSU-NHMFL)

Session Classification: WED-PO2-610 High Tc Wires and Cables IV