DE LA RECHERCHE À L'INDUSTRIE

27TH INTERNATIONAL CONFERENCE ON MAGNET TECHNOLOGY NOV 15 – 19, 2021, FUKUOKA/JAPAN

Dimensional changes measurement of Nb₃Sn Rutherford cables during heat-treatment using Digital Image Correlation

11/18/2021

M. Abdel Hafiz^{1,2}, E. Rochepault¹, H. Felice³, C. Lorin¹ K. Lavernhe², O. Hubert² ¹CEA Paris-Saclay/LEAS ²ENS Paris-Saclay/LMT ³CERN

DE LA RECHERCHE À L'INDUSTRI

22 NB₃SN HEAT TREATMENT *RRP* WIRES

27th MT Conference

LA R Phys

- Nb₃Sn phase is brittle
- Coils are wound then reacted
- Differential strains between coil and tooling create non-negligible stresses
- Superconducting properties are stress sensitive

What are the deformations occurring during heat treatment in Nb₃Sn conductors?

DIGITAL IMAGE CORRELATION METHOD: CORRELI 3.0 PRINCIPLE

Lott Sha

- Correli 3.0 software developed at LMT
- Allows a 2D *in situ* displacement measurement between
 2 ≠ images → use of speckle
- 2 hypotheses:
 - > Grey level is conserved
 - > Displacement is the only difference between the images

Residual:
$$\eta^2 = \int \left| f(\vec{x} + \vec{u}(\vec{x})) - g(\vec{x}) \right|^2 d\vec{x}$$

f reference image g deformed image

Solution displacement : $\vec{u}(\vec{x}) = argmin_{|\vec{u}|}(\eta)$

DIC speckle on Rutherford cable

SAMPLE HOLDER

Experimental setup: sample holder

- Sample holder vertically adjustable
- Jaws maintaining upper and down side of the cable and thermocouples
- Weight preventing the cable to collapse [Michels M., 2017]
- Sliding rods restraining cable from twisting and bending

CO2 EXPERIMENTAL SETUP

- 5 windows allowing to take *in situ* pictures
- Compatible with tensile torsion compression machine (not used)
- Argon supply, O_2 % maintained under 1 2%
- Vertical gradient of temperature from 1 to 0.5 K/cm

Oven Camera LED lighting Argon supply

Experimental setup: oven

Oven scheme

27th MT Conference

Page 7

27th MT Conference

Page 8

- Study on Nb₃Sn Fresca II Rutherford cable
- Average strain on both side of the cable

CON NB₃SN CABLE

3 phenomena observed

- 1. Thermal expansion
- 2. Phases formation
- 3. Copper annealing (literature)

Mainly transversal @ 650°C Mainly longitudinal

STRAND DISPLACEMENT WITHIN NB₃SN CABLE

Strand Mesh

- Strands independently meshed
- Split nodes at strands interfaces

DE LA RECHERCHE À L'INDUSTR

- 2D *in situ* Macroscopic strain measurement of Nb₃Sn Rutherford cables during heat treatment has been performed
- 3 phenomena can be determined by these measurements :
 - Copper annealing
 - Phase transformation
 - Thermal dilatation
- Strand measurement and modelling are in progress in order to predict dimensional changes on ≠ Nb₃Sn conductors

DE LA RECHERCHE À L'INDUSTRIE

References

[Besnard et al., 2006] G. Besnard, F. Hild, and S. Roux, "Finite-element displacement fields analysis from digital images: Application to Portevin–Le Châtelier bands". Exp Mech, 2006.

[Sanabria, 2017] C. Sanabria, "A new understanding of the heat treatment of Nb-Sn superconducting wires," thesis, 2017.

[Pong et al., 2013] I. Pong, L.-R. Oberli, and L. Bottura, "Cu diffusion in nb3sn internal tin superconductors during heat treatment", Superconductor Science and Technology, vol. 26, no. 10, 2013.

[Ebermann et al., 2018] P. Ebermann et al, "Irreversible degradation of Nb_3Sn Rutherford cables due to transverse compressive stress at room temperature" Supercond. Sci. Technol, 2018.

[Michels et al., 2019] M. Michels, F. Lackner, C. Scheuerlein, A. Carlon Zurita, S. Ferradas Troitino, N. Bourcey, F. Savary, and D. Tommasini, "Length changes of unconfined Nb₃Sn Rutherford cables during reaction heat treatment", IEEE Transactions on Applied Superconductivity, vol. 29, no. 5, 2019.

THANK YOU !

DE LA RECHERCHE À L'INDUSTRI

Cea Model vs Experiment

3 Kinds of deformation

- ϵ^{e} Mechanical strain, related to stress ϵ^{th} Thermal strain, related to thermal expansion
- ϵ^{ch} Chemical strain, related to phase changes

2 Area

Cu Copper releasing stresses from 150 to 200°C φ Homogenized area, transversal isotropic