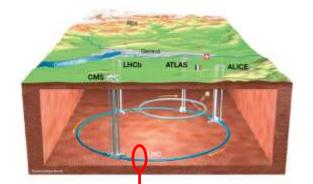
DE LA RECHERCHE À L'INDUSTRIE

27TH INTERNATIONAL CONFERENCE ON MAGNET TECHNOLOGY NOV 15 – 19, 2021, FUKUOKA/JAPAN

MODELLING PHASE TRANSFORMATION AND DIFFUSION PHENOMENA INSIDE Nb₃Sn SUPERCONDUCTING STRANDS


A. Gorynin^{1,2}, M. Abdel Hafiz^{1,2}, E. Rochepault¹, K. Lavernhe², O. Hubert², C. Lorin², H. Felice³

¹CEA Paris-Saclay/LEAS ²ENS Paris-Saclay/LMT, ³CERN

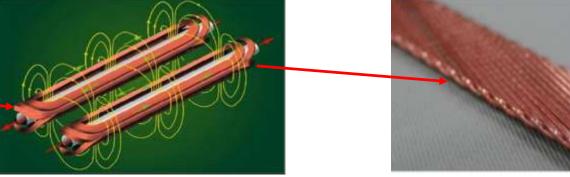
18 NOVEMBER 2021

Cea Motivation

Particle accelerators for high-energy physics

Present: Large Hadron Collider (LHC) (< 10T) Objectives: HC-LHC upgrade, Future Circular Collider (> 10T)

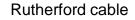
Superconductors are used in high-field accelerators electromagnets

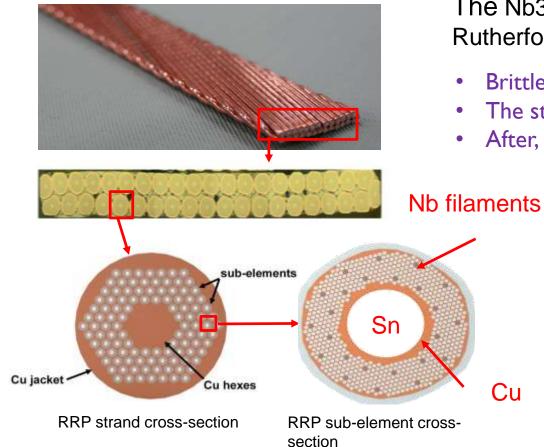

- No resistance at cryogenic temperatures
- High currents, large magnetic fields

Cables are based on superconducting materials

- Nb-Ti limited behavior (LHC)
- Nb3Sn is a perspective for the future high-field electromagnets (HC-LHC)

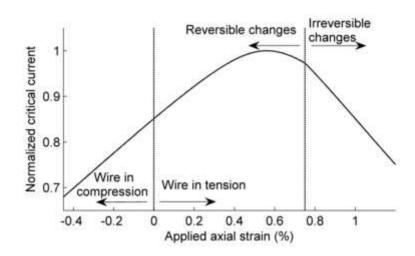
Circular particle accelerators magnet [https://home.cern]




Superconducting coils [https://www.lhc-closer.es]

Rutherford cables [Fermilab, <u>https://td.fnal.gov</u>]

Cea Nb3Sn superconductors design (RRP)



The Nb3Sn-based conductor is produced in rectangular Rutherford type cables, braided from RRP strands

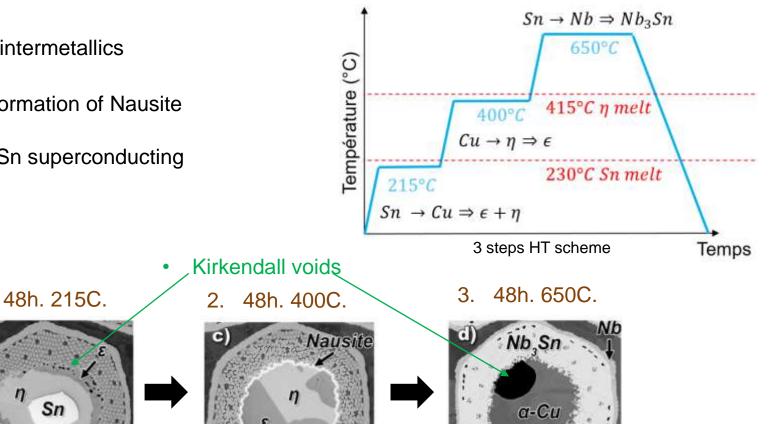
- Brittleness of Nb3Sn
- The strands are first made from distinct ductile components (Cu, Sn, Nb)
- After, braided into cables and wounded into coils.

After the winding, the conductor requires a 3 step heat treatment (HT) up to 650°C that lead to the formation of the Nb3Sn superconducting phase in sub-elements

Critical current in Nb3Sn strand under uniaxial tension [Ahoranta, M. (2008)]

- Thermal loading \rightarrow Accumulate stresses inside conductor
- Nb3Sn is strain-sensitive \rightarrow May degrade the performance
- Mechanical state of Nb3Sn during HT?
- Dynamics of phase transformation inside sub-elements?

Cerrolem of phase transformation dynamics inside RRP strands


During 3 steps of HT:

- Cu and Sn interdiffusion. Formation of intermetallics (IMCs) ε (Cu3Sn) and η (Cu6Sn5)
- 2. All Sn and Cu transformed into $\varepsilon + \eta$. Formation of Nausite membrane.
- 3. Sn diffusion into Nb. Formation of Nb3Sn superconducting phase.

Ti doping in

places

Cu

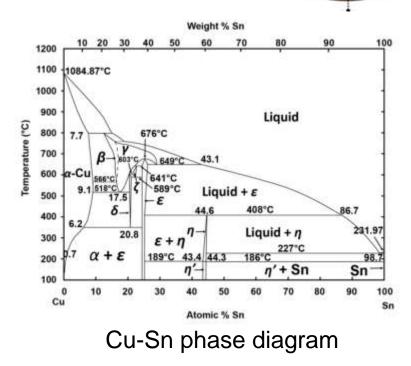
Sub-element

Nh

Sn

C. Sanabria et al., 2019, IEEE, VOL. 29, NO. 5 I. Pong, 2013 et al., Supercond. Sci. Technol. 26

How to estimate dynamics of phase transformations during HT? Mathematical model is to be constructed


Diffusion based growth model: assumptions

Main assumptions

- 1. Axisymmetric geometry of sub-element
- 2. Diffusion controlled growth of ε , η phases
- Thin intermetallic layers are assumed to be presented from the beginning
- Local chemical equilibrium exists at the interfaces between phases (fast chemical reactions compared to diffusion)
- 5. Quasi-stationary diffusion (flux is not changing with time)
- 6. The formation of Kirkendall voids is neglected
- 7. Formation of Nausite is neglected

n sn

Simplified sub-element geometry

Sn n

ε Cu Nb

Diffusion based growth model: mathematical formulation

2nd Fick's law inside each region

$$\begin{cases} \frac{\partial w^{Sn}}{\partial t} = D^{Sn} \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial w^{Sn}}{\partial r}), & r \in [r_0, r_1(t)], \\ \frac{\partial w^{\eta}}{\partial t} = D^{\eta} \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial w^{\eta}}{\partial r}), & r \in [r_1(t), r_2(t)], \\ \frac{\partial w^{\varepsilon}}{\partial t} = D^{\varepsilon} \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial w^{\varepsilon}}{\partial r}), & r \in [r_2(t), r_3(t)], \\ \frac{\partial w^{Cu}}{\partial t} = D^{Cu} \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial w^{Cu}}{\partial r}), & r \in [r_3(t), r_4], \end{cases}$$

$$D^{\alpha} - \text{Diffusion coefficient}$$

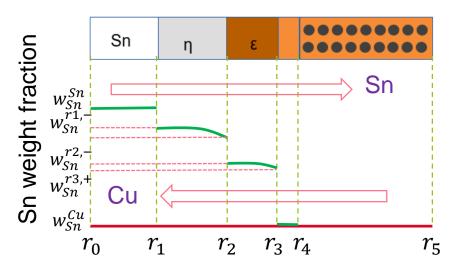
$$\rho^{\alpha} - \text{Density}$$

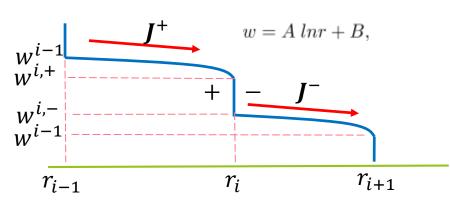
$$w^{\alpha}_{Sn} = \rho^{\alpha} \gamma^{Sn}_{\alpha} - \text{Weight fraction}$$

$$\alpha \in \{Sn, \eta, \varepsilon, Cu\},$$

Quasi-stationary diffusion

$$0 = D\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial w}{\partial r}), - > \quad w = A \ln r + B,$$

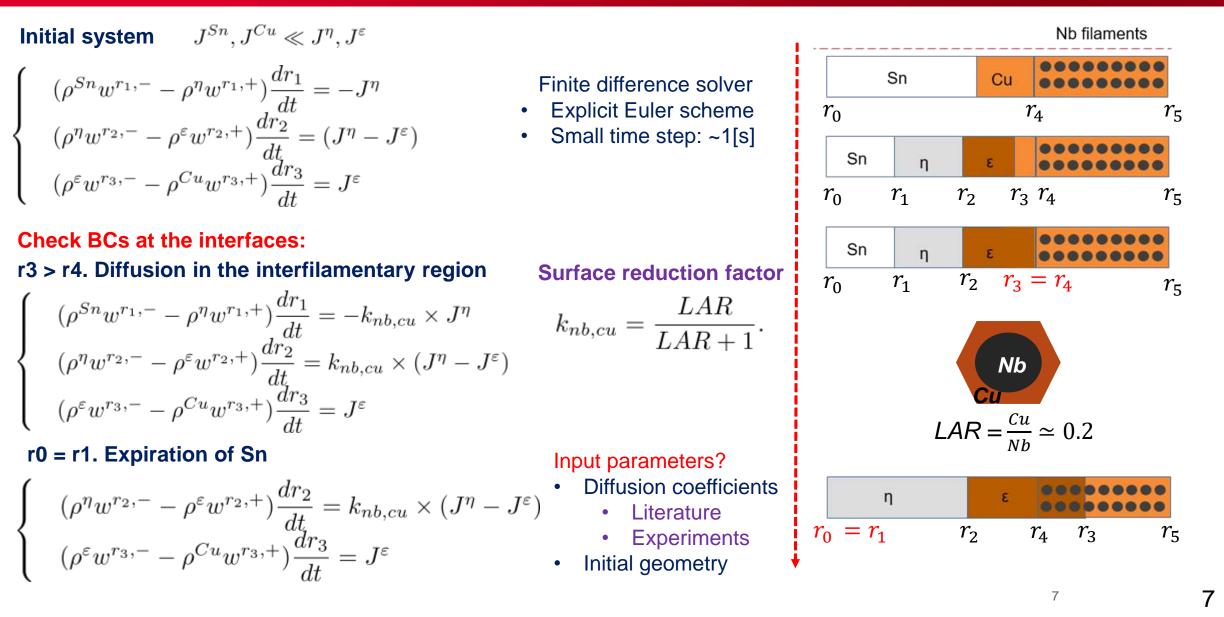

Mass balance at the interface


Mass conservation in system

$$\begin{split} (\rho^+ w^+ - \rho^- w^-) \frac{dr_i}{dt} &= J^+ - J^-, \\ J^+ &= -D^+ \rho^+ \frac{\partial w}{\partial r} = -D^+ \rho^+ \frac{1}{r^i} \, \frac{w^{i,+} - w^{i-1}}{\ln r^i - \ln r^{i-1}}, \\ J^- &= -D^- \rho^- \frac{\partial w}{\partial r} = -D^- \rho^- \frac{1}{r^i} \, \frac{w^{i+1} - w^{i,-}}{\ln r^{i+1} - \ln r^i} \end{split}$$

 $\int_{r_0}^{r_4} \rho(r) w(r) r \ dr = const.$

Weight fractions are constant at the interfaces (known from the phase diagram)



Applying to each interface \rightarrow ODE system

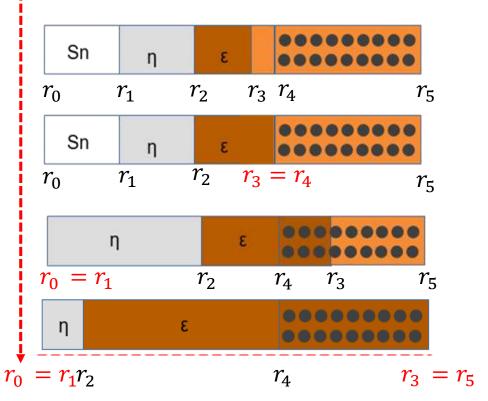
Algorithm for modelling HT: Step I (215C)

Cea Algorithm for modelling HT: Step 2 (400C)

215C → 400C Change of diffusion coefficients

- Ramp not considered
- Nausite formation is neglected
- Tin melting is ignored

The interdiffusion coefficients are taken in the Arrhenius form [Mei, 1992]


$$\begin{split} D^{\varepsilon} &= D_0^{\varepsilon} exp(-\frac{Q^{\varepsilon}}{RT}) = 5.48 \times 10^{-9} exp(\frac{-61.86}{RT}), \\ D^{\eta} &= D_0^{\eta} exp(-\frac{Q^{\eta}}{RT}) = 1.84 \times 10^{-9} exp(\frac{-53.92}{RT}), \end{split}$$

- Q^{α} Activation energy
- D_0^α Pre-exponential actor
- R Gas constant T Temperature (K)

In application to cylindrical system diffusion coefficients should be determined from experiments

Literature diffusion coefficients: Planar interfaces \rightarrow Little use

At the end of step 2: No more Sn and Cu

Experimental part: low temperature HT setup

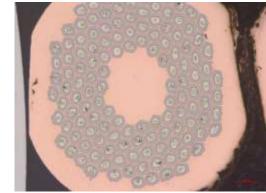
In order to estimate the input parameters for the model (initial geometry, diffusion coefficients), a low temperature heat treatment has been performed on five cable pieces.

- 215 ±5°C temperature for 72 hours
- no use of argon
- quenched after HT

- Thermocouples connected to each specimen
- Cu brackets to avoid warping
- 7 specimens in total

Specimen number	1	2	3	4	5	6	7
Reaction time 215 °C $$	unreacted	ramp	8h	24h	32h	72h	fully reacted
Name	FSC2N	FSC2P + time of HT		FSC2R			

"The conductors were provided by CERN within the collaboration agreement CERN-CEA KE2275/TE"


Scanning electron microscopy (SEM) is used for observations of cross-section of cables

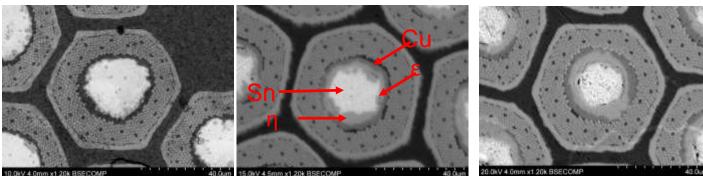
Preparation for SEM:

- Cutting the specimens
- Cold impregnation
- Polishing and grinding
- Sputter coating

Back-scattered electron images analysis

Non-uniform geometry and behavior for each sub-element

Statistical analysis:

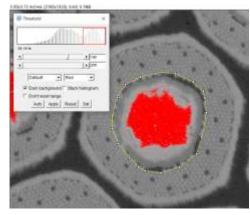

- 7 specimens
- 10-20 BSE images for each specimen
- ~100 images in total

Post processing:

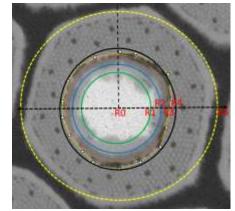
- Threshold adjusting technique (ImageJ)
- Adjusting by eye, manual process

Table 1: Averages of phases during HT, scale: $1 \ [inch] = 21,1976 \ [\mu m]$.

Time of HT	Total area	Core area	Cu~%	Sn $\%$	η %	ε%
	$[inch^2]$	$[inch^2]$	-	-	-	-
Unreacted	6.04	2.11	29.69	70.73	0.00	0.00
Ramp	6.19	2.16	17.49	51.80	31	.32
8h	6.16	2.17	6.57	37.90	32.65	24.78
24h	6.16	2.17	5.53	26.89	36.25	31.92
32h	5.97	2.10	-	29.20	-	-
72h	6.28	2.21	-	19.69	-	-


Unreacted

32 hours


BSE sensitive to density. Each phase has it's own gray level.

8 hours

To distinct Nb and η : Separation into total sub-element area and core area

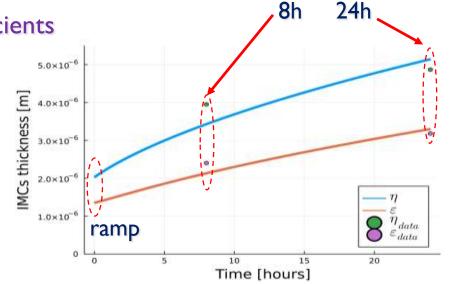
Threshold adjustment with ImageJ

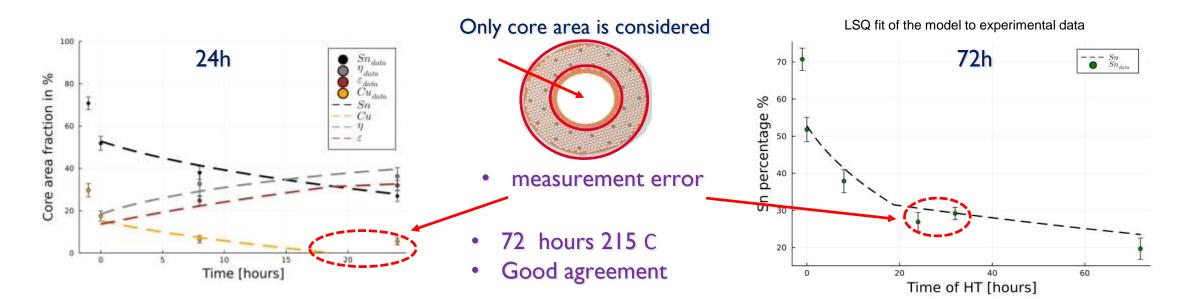
Axisymmetric representation of phases

Conversion to characteristic radii for use in the model

OF LA RECHTACHE & L'INDUSTRI

Cella Identification of the diffusion coefficients

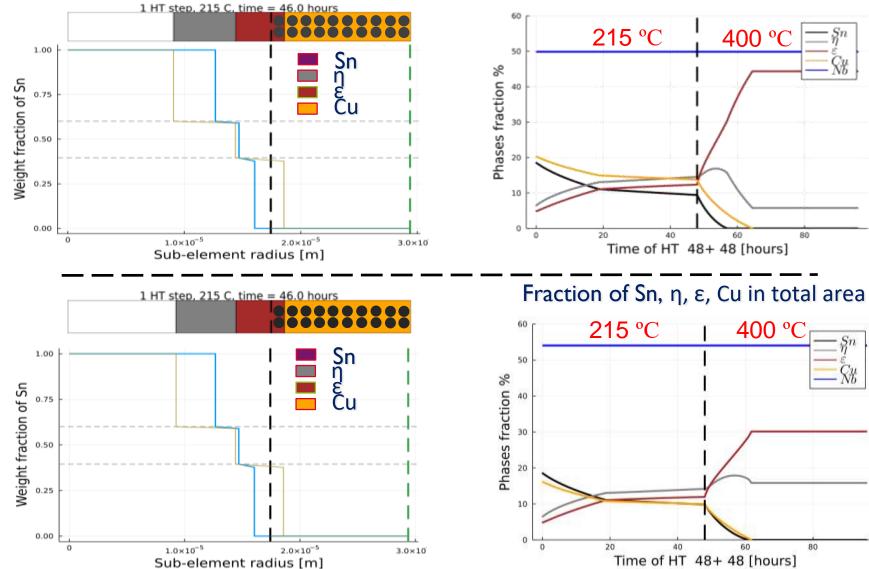

11

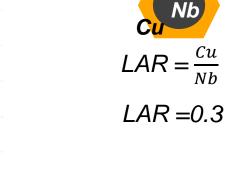

Least squares method was used to determine diffusion coefficients

$$D^{\varepsilon} = D_0^{\varepsilon} exp(-\frac{61.86}{RT}), \quad D^{\eta} = D_0^{\eta} exp(-\frac{53.92}{RT})$$

Pre-exponential factor	Literature $[m^2/s]$	Determined $[m^2/s]$
D_0^η	5.48×10^{-9}	4.05×10^{-9}
D_0^{ε}	1.84×10^{-9}	1.98×10^{-9}

Comparison with experimental data





Results: modelling of I+2 HT steps

Total area is considered

400 °C

60


400 °C

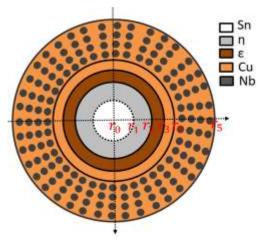
80

40

40

- LAR dependence
- No experimental data

LAR =0.2


- 1. A new simplified one-dimensional model was developed
 - 1. Able to model 1st and 2nd HT steps (Python, Julia codes)
 - 2. Good agreement with available experimental data
- A set of observations was performed on cross-sections of Nb3Sn strands
- 3. Geometrical parameters and diffusion coefficients were determined from experimental observations

Future plans:

- Modelling 3rd step of HT
- Additional experiments at 400 and 650 degrees
- Effect of stresses on diffusion

The model could help:

- Optimize Nb3Sn superconductors
- Modelling mechanical state of Nb3Sn during HT

DE LA RECHERCHE À L'INDUSTRIE

27th International Conference on Magnet Technology Nov 15 – 19, 2021, Fukuoka/Japan

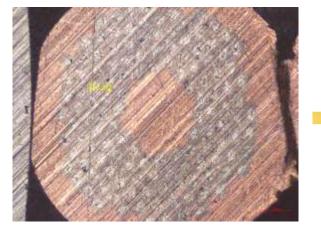
THANK YOU FOR YOUR ATTENTION!

Contacting email: <u>a.gorynin@g.nsu.ru</u>

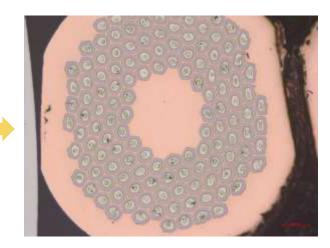
18 NOVEMBER 2021

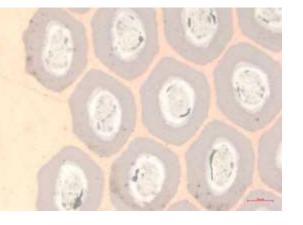
- 1. Schoerling D., Zlobin A. V., (2019). Nb3Sn Accelerator Magnets: Designs, Technologies and Performance. Springer Nature.
- 2. Sanabria C. (2017). New Understanding of the Heat Treatment of Nb-Sn Superconducting Wires. (Doctoral dissertation, The Florida State University).
- 3. Pong I. et al. (2013). Cu diffusion in Nb3Sn internal tin superconductors during heat treatment. Supercond. Sci. Technol. 26 105002.
- 4. Mei Z, Sunwoo AJ, Morris JW (1992) Analysis of low-temperature intermetallic growth in copper-tin diffusion couples. Metall Mater Trans A 23(3):857-864.
- 5. Erickson KL, Hopkins PL, Vianco PT (1994) Solid-state intermetallic compound growth between copper and high-temperature Tin rich solders-Part II–modeling. J Electron Mater 23(8):729-734.
- 6. Schindelin, J. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. doi:10.1038/nmeth.2019

Cea Samples preparation


To proceed with SEM:

- Cutting the specimens
- Cold impregnation
- Polishing and grinding
- Sputter coating

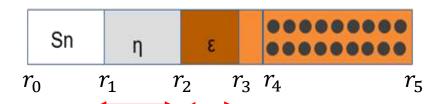

Impregnated specimens


Type/Grain size	Time [min]	Force [N]	Angular velocity [rpm]
N. 800	1	40	300:130
N. 1200	1	40	300:130
N. 1200	1	20	300:130
N. 4000	2	20	300:130
N. 4000	2	10	200:80
$3 \ \mu m$ diamonds	3	20	200:80
$1 \ \mu m$ diamonds	5	10	160:60

Surface before polishing, sample FSC2P 72h. Scale: 100µm.

Surface after polishing, sample FSC2P 24h. Scale: $20\mu m$.

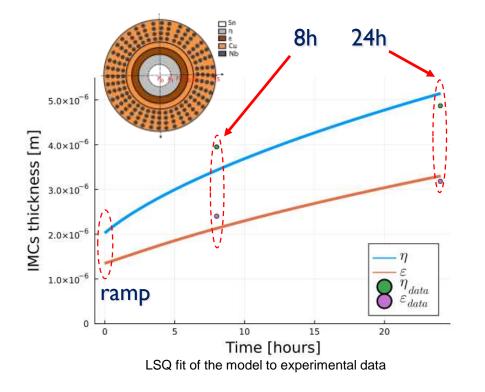
Surface after polishing, sample FSC2P 72h. Scale: 100µm.



Determined polishing parameters

Ceal Identification of the diffusion coefficients

Least squares method was used to determine diffusion coefficients



The model gives ϵ and η layers thickness as function of time

- Estimation of initial thicknesses for ϵ and η phases (IMCs)
- 215 C temperature
- lack of experimental data

$$D^{\varepsilon} = D_0^{\varepsilon} exp(-\frac{61.86}{RT}), \quad D^{\eta} = D_0^{\eta} exp(-\frac{53.92}{RT}).$$

Pre-exponential factor	Literature $[m^2/s]$	Determined $[m^2/s]$
D_0^η	5.48×10^{-9}	4.05×10^{-9}
D_0^{ε}	1.84×10^{-9}	1.98×10^{-9}

