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Context: High-field fusion energy and early HTS R&D (2 min)

The SPARC Toroidal Field Model Coil (12 min)

• Program: Requirements and objectives

• Magnet: Specifications, design, and assembly

• Facility: Capabilities and key enabling technologies

• Test: Results of the first full performance 20 T ramp

Summary (1 min)

This talk is intended as a high-level overview and status of an extensive on-going project.
More in-depth presentation of the project will be in upcoming publications and conferences.
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Early R&D resulted in two viable high-field HTS technologies

VIPER HTS cables
• Based on traditional SC CICC cables using

the TSTC architecture for REBCO tapes [1]
• Demonstrated high IxB robustness, fiber 

optic quench detection, ~nΩ joints [2,3]
• Developed for multiple SPARC applications:

• High current feeder cables
• AC magnets: SPARC CS, PF (w/ modifications)
• DC magnets: back-up for SPARC TF 

[1] M. Takayasu et al., IEEE Trans. Appl. Sup., 21 (2011) 2340
[2] Z. S. Hartwig et al., SuST, 33 (2020) 11LT01
[3] E. E. Salazar et al., SuST, 34 (2021) 035027

Starting in 2017, both technologies were built on HTS magnet work pioneered at MIT

VIPER SULTAN assembly (2018)
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Early R&D resulted in two viable high-field HTS technologies

VIPER HTS cables No Insulation No Twist (NINT) Coils
• Based on traditional SC CICC cables using

the TSTC architecture for REBCO tapes [1]
• Demonstrated high IxB robustness, fiber 

optic quench detection, ~nΩ joints [2,3]
• Developed for multiple SPARC applications:

• High current feeder cables
• AC magnets: SPARC CS, PF (w/ modifications)
• DC magnets: back-up for SPARC TF 

• HTS cable-based adaptation of single tape NI coils [4]
with innovations to enable large-scale fusion magnets

• Demonstrated passive quench handling, advanced
EM modeling capabilities, low voltage operation

• Developed for a specific SPARC application: 
• DC magnet: SPARC TF magnet -> The TFMC

[1] M. Takayasu et al., IEEE Trans. Appl. Sup., 21 (2011) 2340
[2] Z. S. Hartwig et al., SuST, 33 (2020) 11LT01
[3] E. E. Salazar et al., SuST, 34 (2021) 035027 [4] S. Hahn et al., IEEE Trans. Appl. Sup., 21 (2011) 1592

Starting in 2017, both technologies were built on HTS magnet work pioneered at MIT

EM simulation of a NINT coil
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The TFMC Project seeks to eliminate risk in the production and 
operation of large-scale HTS DC magnets

Design

Supply Chain

Fabrication

High field

Operation

RISK

Objective: Design, build, and test (1) a representative
SPARC TF model coil and (2) a fully capable test facility
in 2 years to maximize risk retirement for SPARC

Time Frame: July 2019 – Sep 2021

Team Size: 80+ people at 3 sites

Achieve SPARC requirements (Bpeak, Jwp, Pcooling, etc); EM modeling tools; …

HTS supply and characterization; Structural materials; large-scale vendors; …

Tooling; Manufacturing process and equipment; Process control, Scalability, …

Structural loading; IxB and strain on HTS; Ic limits on HTS; …

Current leads; Feeder cables; Instrumentation; Cooling system; …

Stored magnetic energy; high pressure coolant; induced eddy forces; …Quench
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The TFMC is the first NI large-scale high-field fusion magnet

Targeting peak fields >20 T with simple manufacturing, novel cooling, passive quench handling

2.9 meters

1
.9

 m
eters
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Parameters of the SPARC Toroidal Field Model Coil
Nominal Operating Parameter Value

Number of pancakes 16

Total turns 256

Total REBCO tape 270 km

Operating temperature 20 K

Coolant type Supercrit. He

Operating coolant pressure 20 bar

Operating terminal current 40 kA

Peak magnetic field 20 T

Peak IxB force on REBCO 800 kN/m

Inductance 0.14 H

Magnetic stored energy 110 MJ

WP mass 5,113 kg

WP current density 153 A/mm2

WP + case mass 10,058 kg

WP + case linear size 2.9 x 1.9 m
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• Pancakes
• A machined steel radial plate with channels for HTS and cooling

• The HTS is stack wound into the grooves

• The HTS stack is terminated at internal pancake-to-pancake joints

• VPI solder process bonds mechanically, electrically, and thermally

TFMC uses an HTS stack-in-plate channel design
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• Pancakes

• A machined steel radial plate with channels for HTS and cooling

• The HTS is stack wound into the grooves, capped with copper

• The HTS stack is terminated at internal pancake-to-pancake joints

• VPI solder process bonds mechanically, electrically, and thermally

• Winding pack
• The core of the winding pack comprises 16 stacked, internally jointed pancakes

• Winding pack has 2 top and bottom termination plates for current leads

• Magnet
• The winding pack is contained within a steel structural and pressure vessel case

• High pressure plena on the case enable current, cooling, and instrumentation

TFMC is based on NI HTS stack-in-plate channel design
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• Pancakes

• A machined steel radial plate with channels for HTS and cooling

• The HTS is stack wound into the grooves, capped with copper

• The HTS stack is terminated at internal pancake-to-pancake joints

• VPI solder process bonds mechanically, electrically, and thermally

• Winding pack

• The core of the winding pack is 16 stacked, internally jointed pancakes

• Winding pack has 2 top and bottom termination plates for current leads

• Magnet

• The winding pack is contained within a steel structural and pressure vessel case

• High pressure plena on the case enable current, cooling, and instrumentation

TFMC is based on NI HTS stack-in-plate channel design

Propose Design Features Advantage(s) to be proven in the TFMC Project

Modular, simple construction Rapid assembly; Maintenance options; scalable for commercial production

Intrinsically low voltage (<1 V) Minimal insulation; simple fabrication, low voltage leads and feeds, safety

High thermal stability Robust to damage, defects, and off-normal events

Pressure vessel cooling approach Enhanced heat removal; Local cooling optimization; simplified manifolding

High winding pack current density Compact magnet; expanded design space

Passively safe to quench No quench detection systems
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A new magnet test facility has been established at MIT
Facility provides substantial test capabilities for the TFMC and future magnet R&D
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A new magnet test facility has been established at MIT
Facility provides substantial test capabilities for the TFMC and future magnet R&D

50 kA 
warm bus

(297 k)

50 kA 
power supply

600 W @ 20 K
cryosystem
(liquid free)

50 kA HTS
current leads

(297 K to 20 K)

50 kA HTS
cold bus (feeders)

(20 K)

15 ton
gantry and

lifting fixture

Main cryostat
w/ LN2 shields

Not shown: SHe and LN2 distribution systems; Vacuum systems; I&C system; Safety systems; Control Room
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• Binary HTS current leads were designed,
fabricated, and commissioned in-house

• Designed to supply up to 50 kA for low
voltage DC magnets

• LN2 section can be sub-cooled to enable
high current performance

• In-house development required to meet
performance and schedule requirements

Binary 50 kA HTS current leads and feeder system proven
Water-cooled

copper bus (293 K)

Copper heat-
exchanger section

(293 K to 77 K)

LN2 boiling
chambers ( 65-77 K)

HTS section
(77 K to 20 K)

TFMC
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• Binary HTS current leads were designed,
fabricated, and commissioned in-house

• Designed to supply up to 50 kA for low
voltage DC magnets

• LN2 section can be sub-cooled to enable
high current performance

• In-house development required to meet
performance and schedule requirements

• Feeder system to magnet composed
of 3 sets of VIPER HTS cables

• Complex shape to mitigate thermally
induced differential strain due to cooldown

• 3 sets of joints to simplify assembly

• Unique high-pressure feedthrough to
enable connection to TFMC magnet

• Leads and feeder system commissioned
in advance of TFMC installation

• Tested to 41 kA (max required current)

• All joints with 1.5 – 2.0 nOhm performance

Binary 50 kA HTS current leads and feeder system proven

VIPER HTS
Feeder Cables

(20 K)
Feeder interface
into TFMC (20 K)

TFMC
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• First full-performance test asked 3 primary questions of the coil operating in DC:
• Does the TFMC precisely match design B-field and withstand static loading?

• Does the coil distribute current during charging and flat-top as predicted?

• Does the TFMC distribute voltage (heating) as predicted?

1st Test: Assess DC operation of the TFMC at full performance

20 T

0 T

15 T

10 T

5 T

EM simulations of B-field at Iterminal=40 kA (top)
and the test plan for the approach to 20 T (bottom)



11/17/2021 20MT27 | © SPARC

• First full-performance test asked 3 primary questions of the coil operating in DC:
• Does the TFMC precisely match design B-field and withstand static loading?

• Does the coil distribute current during charging and flat-top as predicted?

• Does the TFMC distribute voltage (heating) as predicted?

• The winding pack contained an extensive array of internal
embedded instrumentation to provide complete 
characterization of the  coil electrically and thermally

• >180 voltage taps (internal)

• >30 Cernoxes RTDs (internal)

• 4 embedded hall probes (internal)

• Helium flow and pressure sensors (internal)

• Strain gauges (external)

• Two external 3D hall probes were used
to produce robust confirmation of
magnetic field metrology

• Calibrated against fiber optic current
sensors (FOCS) measuring azimuthal
current in the coil

1st Test: Assess DC operation of the TFMC at full performance
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1st Test: Key performance objectives met for the TFMC at 20 T 

First full performance test largely followed the 
plan predicted by experience and modeling:

Vacuum: 2 day pump down to 10-6 torr vacuum
Cooldown: 7 day cooldown from 293 to 18 K
Charging: 5 day test campaign to ramp to 20 T back to 0 T

Experimental measurements of 20 T ramp

As measured
on fiber optic
current sensor

As measured
on 2 external
3D hall probes
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1st Test: Key performance objectives met for the TFMC at 20 T 

High-field performance confirmed

• B~20.3 T average on inner radius HTS stacks

• IxB>800 kN/M radial loading on HTS stacks

Low-resistance internal pancake-to-pancake joints

• R of 1.0-1.5 nΩ at maximum current of ~40 kA

• Structural robust within 5 T (outer) and 12 T (inner)

Excellent cryogenic performance, stability, control

• WP temperature control between 18 – 32 K

• WP temperature uniformity of 1 – 2 K 

Significant structural loading handled as designed

• Winding pack stress >800 MPa, case >900 MPa

• Smooth stress-strain; strain gauges matched prediction

Excellent matches to simulated predictions

• Global B-field magnitude and 3D metrology

• Magnet charging/settling times

• Voltage distribution within pancakes

• Cryogenic cooling and temperature distributions

First full performance test largely followed the 
plan predicted by experience and modeling:

Vacuum: 2 day pump down to 10-6 torr vacuum
Cooldown: 7 day cooldown from 293 to 18 K
Charging: 5 day test campaign to ramp to 20 T back to 0 T

Experimental measurements of 20 T ramp

As measured
on fiber optic
current sensor

As measured
on 2 external
3D hall probes
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The TFMC has begun a new generation of superconducting
magnets at unprecedented performance and compact size
• Established manufacturing knowledge base to begin commercial-scale production

• Created enabling innovations (e.g. 50 kA HTS current leads, advanced EM modeling, etc.)

• Resulted in establishment of a new, highly capable magnet test facility at MIT

The TFMC and other MIT-CFS R&D will continue to retire 
critical risk for SPARC and large-scale NI HTS magnets
• Exploring passive quench handling and assessment of operation limits

• Robustness to mechanical and thermal cycling

• EM model validation and extrapolation to the SPARC TF design

TFMC-like performance (> 20 T peak field-on-coil) would enable
SPARC to achieve a Qphysics=11 (burning plasma regime)
• 40x smaller net-energy fusion tokamaks than traditional LTS magnets

• Increased future economic prospects (= Pfusion with much less mass/volume and cost)

The TFMC has established a solid foundation to design and operate
large-scale, large-bore HTS magnets exceeding 20 tesla

Nb3Sn
magnets

CFS-MIT
HTS magnets


