

Obongyi Qin^{1,7}, Kazumasa Iida^{2,7}, Chiara Tarantini³, Takafumi Hatano^{2,7}, Yiming Ma⁵, Chao Wang⁴, Hongye Gao⁴, Zimeng Guo^{5,7}, Hikaru Saito^{6,7}, Satoshi Hata^{4,5,7}, Michio Naito^{1,7}, and Akiyasu Yamamoto^{1,7} ¹Tokyo University of Agriculture and Technology, ²Nagoya University, ³Applied Superconductivity Center, National High Magnetic Field Laboratory, ⁴The Ultramicroscopy Research Center, Kyushu University, ⁵Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, ⁶ Institute for Materials Chemistry and Engineering, Kyushu University, ⁷ JST CREST

Introduction

- **Iron-based superconductor** $Ba_{1-x}K_xFe_2As_2$ (K-doped Ba122)
 - High superconducting parameter of $T_c = 38$ K, $H_{c2} \sim 100$ T, and $J_c > 1$ MA/cm²
 - Small electromagnetic anisotropy $\gamma \sim 1-2$
 - \rightarrow Favorable material for high-field application
- **D** Epitaxial thin film
 - Essential for fundamental study and device application (*e.g.*, grain-boundary transport property)
 - Mostly studied in Co-doped Ba122
 - K-doped Ba122 epitaxial thin films have not been realized
 - → Control of highly volatile potassium is necessary to realize K-doped Ba122 epitaxial thin films

Background

Growth of epitaxial K-doped Ba122 was performed by several groups

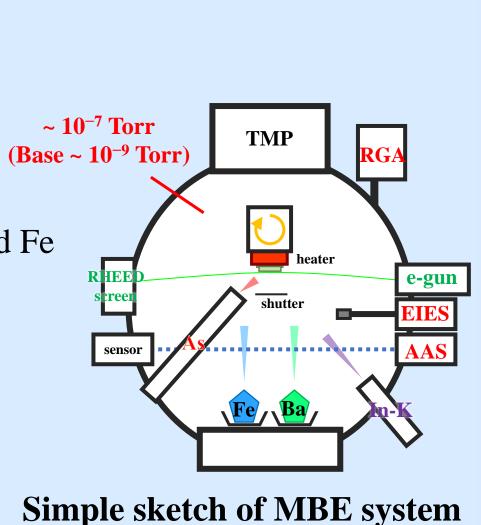
	Substrate	Growth temperature	Crystallinity
N. H. Lee <i>et al</i> . ^[1]	Oxide ^{*1}	High-temperature growth & post-annealing	<i>c</i> -axis oriented
M. Naito <i>et al</i> . ^[2]	Oxide ^{*2}	Low-temperature growth	<i>c</i> -axis oriented
H. Hiramatsu <i>et al</i> . ^[3]	Oxide ^{*3}	High-temperature growth & post-annealing	<i>c</i> -axis oriented & weakly in-plane aligned
Previous work ^[4]	Fluoride ^{*4}	Low-temperature growth	Truly epitaxial

^{*1} *c*-cut Al₂O₃ and LaAlO₃(001) ^{*2} LaAlO₃(001), MgO(001), *r*-cut Al₂O₃, and SrTiO₃(001) ^{*3} (La,Sr)(Al,Ta)O₃(001) ^{*4} $AEF_2(001)$ (AE = Ca, Sr, and Ba)

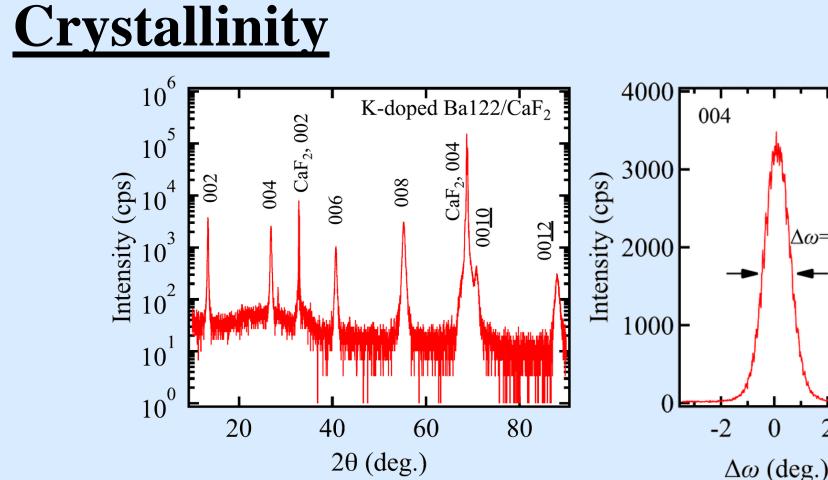
Epitaxial growth of K-doped Ba122 was realized by the combination of low-temperature growth and the usage of fluoride substrate

Purpose

Investigation of critical current characteristics and nanostructure of the high- J_c K-doped Ba122 epitaxial thin films

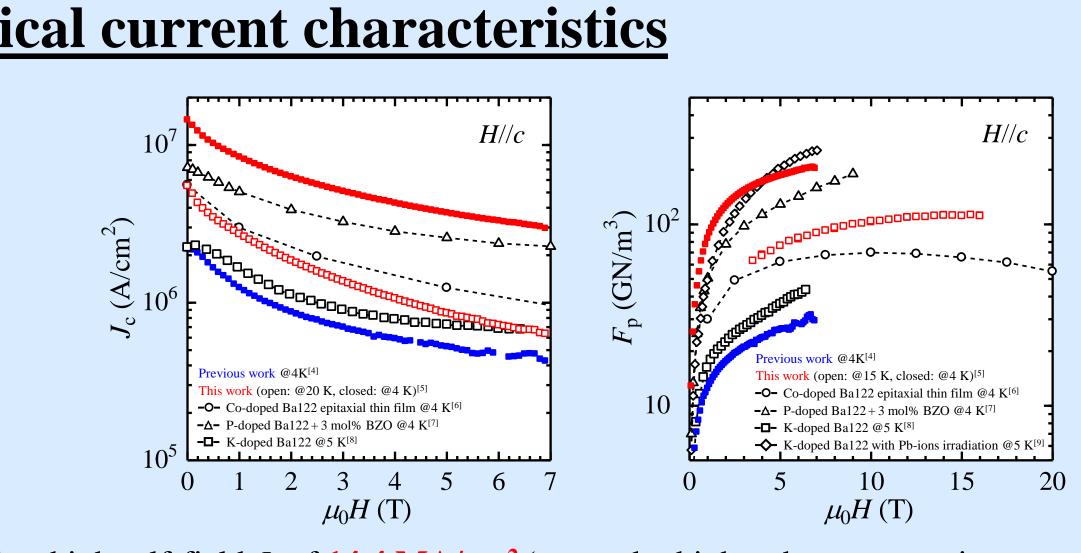

Experimental Procedure

□ Film preparation

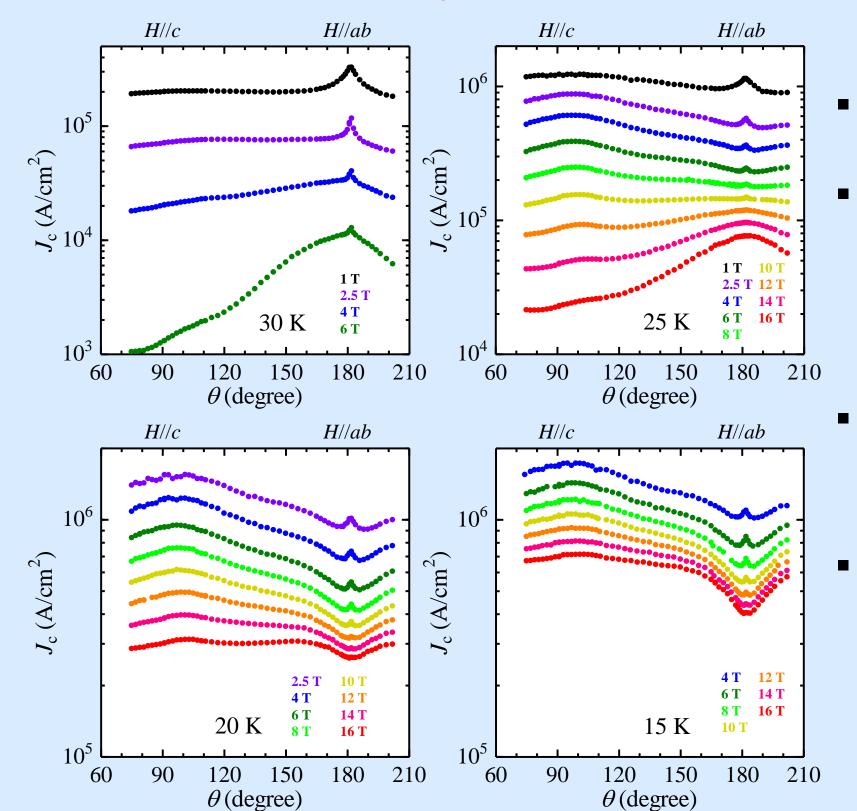

- Growth using custom-designed molecular-beam epitaxy
- Real-time monitoring of evaporation rate
- Electron impact emission spectrometry (EIES) for Ba and Fe
- ii. Atomic absorption spectrometry (AAS) for K
- iii. Residual gas analyzer (RGA) for As
- Low temperature growth (~ 395° C) on CaF₂(001) substrate

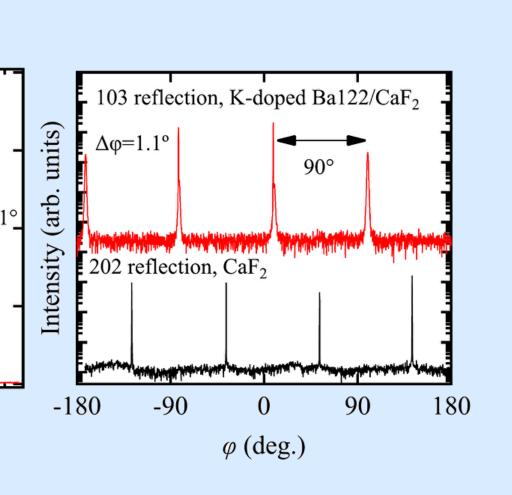
Measurement

- X-ray diffraction
- Transmission electron microscopy (TEM)
- TEM-based scanning precession electron diffraction
- Magnetization measurement

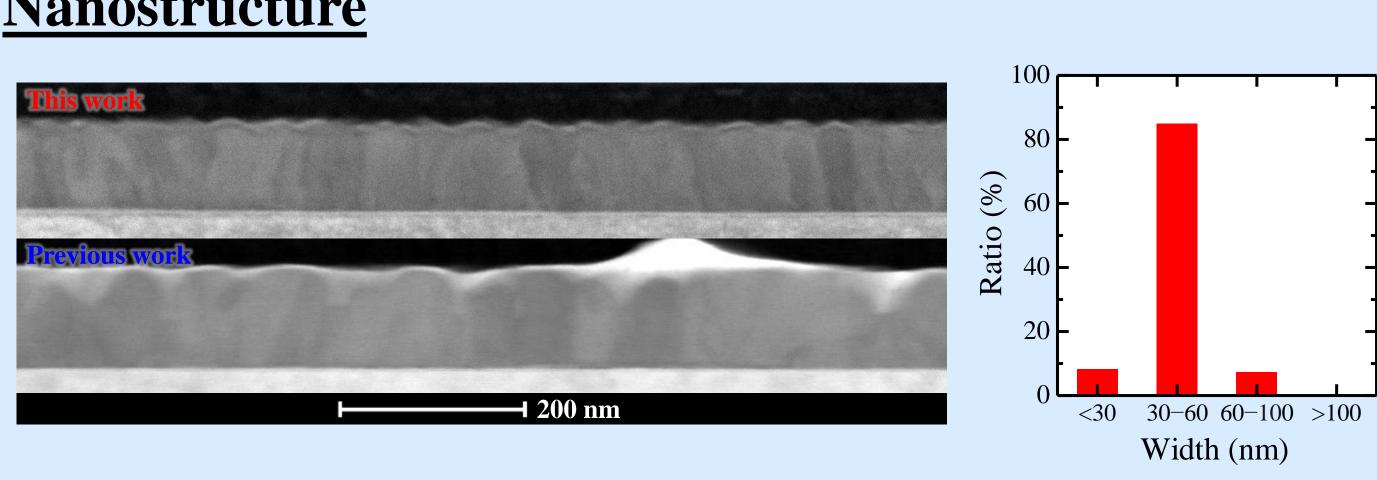

Critical current and nano-structural properties of K-doped BaFe₂As₂ epitaxial thin films by molecular beam epitaxy

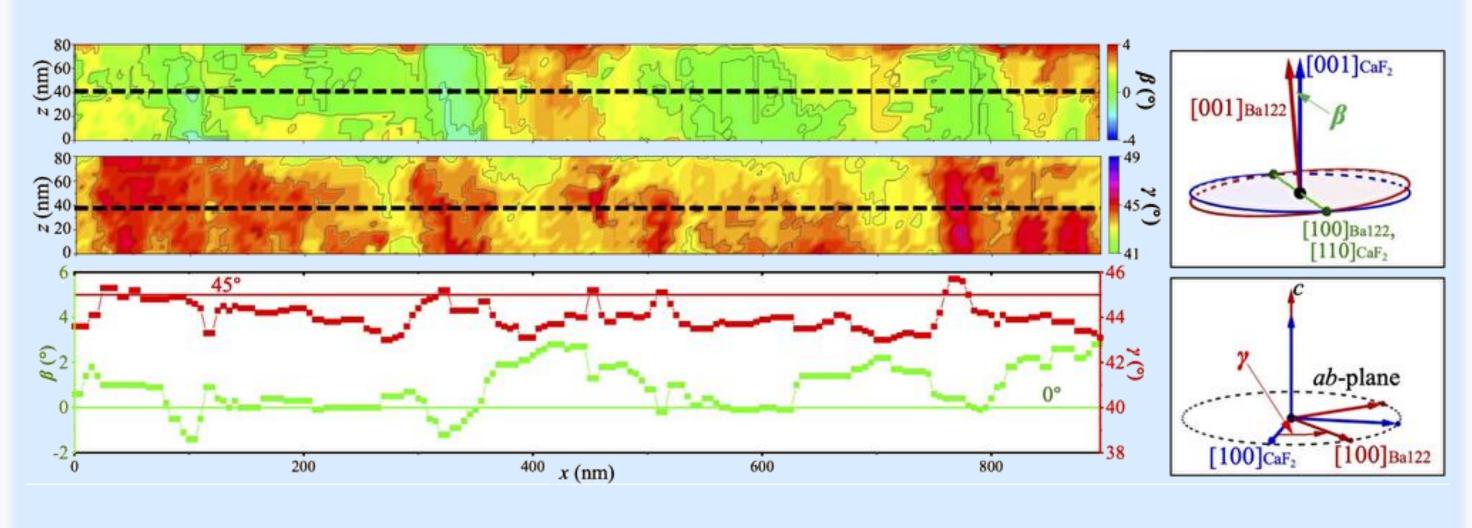
- Sharp *c*-axis orientation
- Out-of-plane FWHM of $\Delta \omega = 1.1^{\circ}$ for (004) reflection (equivalent to our previous report^[4])
- Clear four-folded symmetry
- In-plane FWHM of $\Delta \phi = 1.1^{\circ}$ for (103) reflection (improved by careful optimization of growth $condition^{[4]}$


Successfully grown high crystallinity K-doped Ba122 epitaxial thin films on CaF₂


Critical current characteristics

- Very high self-field J_c of 14.4 MA/cm² (one order higher than our previous report^[4]) \rightarrow Higher than other 122-type epitaxial thin films
- Retain 3 MA/cm² under 7 T which corresponds to pinning force density of **200 GN/m³** • Up to 4 T, our K-doped Ba122 epitaxial thin film possesses the highest $F_{\rm p}$ among 122-type superconductors




- J_c behavior is anisotropic at 30 K
- \rightarrow Intrinsic pinning at *H*//*c*
- At 25 K, $J_c(H//c)/J_c(H//ab)$ is field dependent
- $\rightarrow J_c(H//c) < J_c(H//ab)$ above 10 T
- $\rightarrow J_{c}(H//c) \sim J_{c}(H//ab)$ at 10 T
- $\rightarrow J_c(H//c) > J_c(H//ab)$ below 10 T
- $J_c(H//c) > J_c(H//ab)$ below 20 K, 16 T **Strong flux pinning due to** *c***-axis** correlated pin is suggested
- $J_{c}(\theta)$ is not symmetric in the direction of the applied magnetic field relative to the *c*-axis
- \rightarrow c-axis correlated pin is expected to be slightly tilted

Nanostructure

- No defects parallel to the *ab* plane (*e.g.*, stacking faults) • Numerous grain boundaries along *c*-axis direction (slightly tilted)
- \rightarrow Grain boundaries are low angle
- \rightarrow Low-angle grain boundaries act as pinning centers Most of (~85%) the width of grains were 30–60 nm (high density low-angle grain boundary) Uniformity of the grain size and high-density low-angle grain boundary enhanced pinning

characteristics

- The world's first nanoscale crystal orientation analysis on iron-based superconductors
- The average grain rotation around *a* (or *b*-) axis is $\Delta\beta_{\text{average}} = \pm 1.5^\circ$, and around *c*-axis is
- $\Delta \gamma_{\text{average}} = 45^{\circ} \pm 1^{\circ}$
- Consistent with the results obtained on angular dependence of J_c Grain rotation resulting in the formation of low-angle grain boundary networks

Conclusion

- \checkmark A very high J_c of 14.4 MA/cm² was obtained without artificial pinning centers
- \checkmark Strong flux pinning due to *c*-axis correlated pin is suggested from angular dependence of $J_{\rm c}$
- \checkmark The small grain size of 30–60 nm resulted in high-density low-angle grain boundaries acting as pinning centers
- ✓ Phase purity, in-plane crystallinity, and introduction of pinning centers through optimization of microstructure are important for improving J_c

References

- [1] N. H. Lee et al., Appl. Phys. Lett. 96, 202505 (2010).
- [2] S. Ueda et al., Jpn. J. Appl. Phys. 51, 010103 (2012).
- [3] H. Hiramatsu et al., ASC Appl. Mater. Interfaces 6, 14293 (201 [4] D. Qin et al., Phys. Rev. Mater. 5, 014801 (2021).
- [5] K. Iida *et al.*, *NPG Asia Mater.* **13**, 68 (2021).

[6] C. Tarantini *et al.*, *Sci. Rep.* **4**, 7305 (2014). [7] M. Miura et al., Supercond. Sci. Technol. 32, 064005 (2019).

- [8] S. Ishida et al., Phys. Rev. B 95, 014517 (2017).
- [9] L. Fang et al., Appl. Phys. Lett. 101, 012601 (2012).

