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Abstract — We report a design comparison between the inner and the outer rotor type for a partial high temperature superconductor (HTS)
synchronous motor based on a multi-objective optimization. The partial HTS synchronous motors with the inner and outer rotor type are
respectively optimized by a multi-objective optimization which considers three characteristics; specific power (power per weight), power density
(power per volume), and HTS tape consumption, simultaneously. At this time, the performance of each design is evaluated through the
electromagnetic finite element method. Finally, the results obtained by optimization are compared between the inner and the outer rotor type.

Il Optimal Design of HTS Synchronous Motor

In many industrial applications, there has been a growing need for electrical © Specifications and design variables
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designed in considering two types of synchronous motor: an inner and an outer PSS y— 07
rotor type. Since each type has advantages and disadvantages in motor AT @ et [y 10
characteristics, a design comparison between each type is necessary. Therefore, in Inverter rated voltage [Vdc] 650
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https://www.superpower-inc.com/specification.aspx
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Il. Multi-Objective Optimization
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Minimize or Maximize f(x) — {fl (x)’ e fM (x)}’ f: M-dimensional objective function T CoRa TS ] 5 ~10 Fig. 3. The design structure of HTS synchronous motor (180 deg).

Table Il. Key design variables

g: K-dimensional inequality constraint [2] A multi-width approach is applied to improve motor performance.

o Optimization problem and parameter

subjectto g(x) ={g:(x),g>(x),---,gx(x)} <0,

h: L-dimensional equality constraint

h(x) = {hy (%), ha(x), -, h(x)} = 0, x: N-dimensional variable vector
X ={x1,%,xy} € RN R: feasible space v' 3 objective functions: f;(x) = =SP(x), f,(x) = —PD(x), f3(x) = TC(x).
- - /
L . . . v' Minimize f(x) = x), > (x), f-(x (D A
v’ Finding nondominated solutions (or pareto- front solutions) f&) = 110, f2(2), f3(0)] SF: Specific Power [kW/kel]
Subject to 1y (x) = Tayg(x) — 318.5 = 0 | PD: Power Density [Wiem|
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Table Ill. Optimization parameter
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: Any member of solutions that is not dominated f2(4) < fo(?) f2 Convergence condition 80 generations Crossover Real-coded GA with SBX

by any other member
y any Fig. 1. Example of pareto-front solutions.

v 2-D finite element method by JMAG designer’ software is used.

v Conventional MOO algorithms: NSGA-II, NSGA-III, MOEA/D, etc. v In-house ‘NSGA-IIl code’ is applied to the optimal design.
o Applied MOO algorithm: NSGA-III
v’ Reference-point-based Nondominated Sorting Genetic Algorithm IV' Comparlson Of OptImIZEd RESUltS
[ref.] H. Jain and K. Deb, “An evolutionary Many-objective optimization algorithm using reference-point-based

nondominated soring approach, part Il: handling constraints and extending to an adaptive approach”, D Opt|m|zed result
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Table IV. Results of the optimized models
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v’ Optimization procedure =5 Models _Model 1 | Model 2 | Model 3 | Model 4
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(b) Scatter plot of f3(= TC) vs. f,(= —PD). Operating current [A] 163 172 190 192
Fig. 2. Flowchart of NSGA-III algorithm. Fig. 4. Optimized result of the HTS synchronous motor.

/[ Conclusion ]

In this paper, the inner and the outer rotor type of a partial HTS synchronous motor was optimized based on a multi-objective optimization. As a
result of comparing three characteristics between the inner and the outer type of the HTS motor, the inner rotor type showed better results than
the outer rotor type at the operating point (rated power and speed). Especially, a model with maximum specific power of 11.4 kW/kg was
derived through the multi-objective optimization process in the inner rotor type of the HTS synchronous motor.
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