

Conductors for Fast Ramping Accelerator Magnets

E. Barzi (FNAL), C. Johnstone (FNAL), M. Majoros (OSU), M. Palmer (BNL), M. Sumption (OSU), D. Zhang (OSU)

November 15, 2021

Fast Ramping Dipole Magnets

Fast ramping magnets are important accelerator components in several areas

- High Energy Physics: accelerator ring for a Muon Collider, in booster accelerators for other colliders, and systems which produce high-intensity proton beams for high intensity targets
- Basic Energy Sciences: Part of system generating intense levels of irradiation for material science studies
- Fusion Energy Science: accelerator driven modular nuclear reactors
- Medical Applications: fast-cycling superconducting compact accelerator technology

Fast Ramping Dipole for Muon Collider

- Ideal specs for the accelerator of a muon collider is a dipole magnet that can reach 2 T with ramp rates >1000 T/s.
- This amounts to (assuming 2 T and 1000 T/s, and a triangular wave), f = 125 Hz, or 1 T and 250 Hz
- It is interesting to note that this is more or less the range of fields and frequencies of interest for conductors for electric aircraft propulsion motors (0.5-2 T, 200-400 Hz)

Two Options: Superferric and Coil dominated

Superferric Design

Record Fast 290 T/s Accelerator HTS-based Magnet Tests Henryk Piekarz, Steve Hays, Brad Claypool, Matt Kuffer, Vladimir Shiltsev (Fermilab)

Advantage:

Superferric minimizes SC (thus SC losses)

Can be designed with warm iron

Coil dominated Designs

SIS-200/300 Nuclear physics fast ramp dipole, e.g., 4 T **Advantage:** Higher fields, > 2T

Superferric REBCO Designs

- Piekarz et al., "New HTS fast ramping magnet technology", NIM A, Vol 943, 2019, 162490.
- H. Piekarz, J. Blowers, S. Hays and V. Shiltsev, "Design, Construction, and Test Arrangement of a Fast-Cycling HTS Accelerator Magnet," in IEEE Transactions on Applied Superconductivity, vol. 24, no. 3, pp. 1-4, June 2014, Art no. 4001404, doi: 10.1109/TASC.2013.2285093
- H. Piekarz, "A Preliminary Consideration of Superconducting Rapid-Cycling Magnets for Muon Acceleration," FERMILB-TM-2575-APC.

METHOD USED

- Compares losses in conductors at 2 T sweep, 1000 T/s and 1 T sweep, 1000 T/s (125 and 250 Hz)
- Assumes full field on conductors
- Compares J_e and losses
- Includes conductor metrics
- Materials Considered: NbTi (not shown), MgB2, Bi2212, Al Hyperconductor
- Subsequent comparisons will be made with REBCO in tape and cable form

Various Low loss SC and Cryo-conductor Options

114-filament low AC-loss MgB₂ (with CuNi matrix)

Bi2212 Conductor from SMS (Otto)

Hyperconductor - High Purity Al in Al-Fe-Ce matrix

Cu-coated Al Litz wire

Loss Components of a SC

<u>Total loss</u>

$$P_t = P_h + P_e + P_c + P_I + P_x$$

Hysteretic Loss

$$Q = (8/3\pi)B_0 J_c d \qquad P = Q f$$

Coupling loss

$$Q_{coup} = \frac{B_0^2 f L_p^2}{2\rho} \frac{1}{(1+\omega^2 \tau^2)} \qquad \tau = (\frac{\mu_0}{2\rho_\perp}) (\frac{L_p}{2\pi})^2$$

Eddy Current loss

$$P_e = \frac{\pi^2}{k\rho_n} [(\mu_0 H_0) w f]^2$$

Transport Current loss

$$\frac{P}{L} = \frac{\mu_0 f}{\pi} I_c^2 \left[\left(1 - \frac{I_0}{I_c} \right) \ln \left(1 - \frac{I_0}{I_c} \right) + \frac{I_0}{I_c} - \frac{1}{2} \left(\frac{I_0}{I_c} \right)^2 \right]$$

Because of large L_p/d ratio, and also f² like dependence, coupling loss dominates at high frequency

Anomalous Magnetoresistance in Hyperconductor composites

RRR vs *B* for (i) bulk HPAL – filled squares and extending dashed line, (ii) theory for Al composite including anomalous hall effect – solid line no symbols, and (iii) experimental data for composite with Al-Fe-Ce matrix, from Eckels [P.W. Eckles, N.C. Iyer, A. Patterson, A.T. Male, J.H. Parker, and J.W. Coltman, "Magnetoresistance; the Hall Effect in Composite Aluminum Conductors", Cryogenics 29 (1989) 749.]

$$V_h = R_h IBt/A$$

$$\rho_{TOT} = \rho_{bulk} + \rho_H \quad \text{"pseudo"}$$

$$resistanc$$

$$\rho_H = 2(R_H B)^2 \frac{\delta t}{A_a \rho_b} \quad e$$

- Since this component scales as $1/\rho_{b}$, we can choose, for example, Cu-10 Ni, with a resistivity of $\cong 10$ $\mu\Omega$ cm (roughly temperature independent).
- If we used such a material, then the anomalous magnetoresistance component would be hugely suppressed, and ignorable in fields below 14 T.

Je and Loss comparisons

25 Hz only, and 2 T sweep

Conductor	J_e (A/mm ²)	T _{op} ,	$OD/d_f/L_p$,	Ohmic,	Hyst,	Coup,	Eddy, W/cm ³	Transport,	Total	W/cm ³ *(J _{cNbTi} /J _c)
	2 T, <i>T_{op}</i>	К	mm/µm/mm	W/cm³	W/cm³	W/cm³		W/cm ³		
NbTi	2100	4.2	0.8/0.5/5	0	0.178	1	0.033	2.20	3.41	3.41
MgB ₂	315	20	0.8/20/5	0	0.4	1	0.033	0.228	1.66	11.1
SMS Bi2212	500	20	0.3/20/10	0	0.433	.46	.0157	.131	1.04	4.37
HPAL Multi/braid	134	20	0.8/20/	1					1	15.7
YBCO**	1620	20	2/2000/10	0						

** Tape stack

Benefit to higher temp operation, but only geometry that makes sense it very thin tapes or thin tapes/cables with superferric design

Summary

- Regimes for various superconductors and cryo-conductors for use in Fast ramp dipoles were reviewed
- Loss expressions for superconductors were calculated <u>below the</u> <u>skin</u> depth regimes
- Losses were compared between a low-loss NbTi strand and that of MgB2, Bi2212, Cryo-Al
- YBCO tapes with Parallel Field arrangement leads to lower loss, but computation of exact losses require details of orientation and field distribution
- Next step will be to compare losses of REBCO parallel in Superferric and non-superferric designs