Lessons Learned in the Design and Fabrication of Accelerator Magnets

Steve Gourlay, LBNL (Retired)
Lessons are of several types

• Technology is the one we focus the most on

• But there is
 • Psychology
 • Sociology
 • Politics

 How we implement the technology

Several projects have failed due to a bad mix of technology and politics
Cost/Performance requirements lead to challenges

• For colliders it is about optimizing the size of the ring and magnetic field strength
 • Highest field possible for an ensemble of industrially produced magnets – this is not clear at the beginning of a project and historically, expectations have been too ambitious.
 • Compact - in order to minimize tunnel size

• This leads to . . .
 • High engineering current density - > 1,000 A/mm²
 • Requires active magnet protection
 • High current – low inductance
 • Minimal but adequate copper in the strand
 • Smallest possible aperture (problem for accelerator physicists and magnet builders)
 • Excellent field quality (10⁻⁴) – precise location of conductors
 • Longest length that can fit on a truck (~ 15m)
First Lesson Learned:
Not everyone knows what an accelerator magnet looks like!

Image: CERN

LHC Dipoles

US Hi-Lumi Quadrupole
Problem highlights

• Cabling and coil winding – still a combination of art and engineering
 • Only became more difficult with Nb$_3$Sn and HTS
• Insulation, voltage breakdown
• Mechanical support of strain sensitive materials – everything but Nb-Ti
• Miscellaneous, ”one-off” problems
 • Magnet fell off truck
 • Shipping constraints failed during transport
 • Cut the leads off the wrong magnet
 • Quench heater trace trimmed too close to the edge leading to voltage breakdown
 • Equipment failure during fabrication

All of these events are opportunities for learning, but for some, it is just part of the process
Rutherford Cable – The “current” standard conductor

• With few exceptions all accelerator magnets use Rutherford-style cables*
 • Multi-strand – reduce strand length, fewer turns (lower inductance)
 • High current density
 • Precise dimensions – controlled conductor placement (field quality)
 • Current redistribution – stability
 • Twisting to reduce interstrand coupling currents (field quality)

*Early mention circa. 1971
LBNL Cabling Facility
LBNL Cabling Facility

Power Turk’s Head
Lesson 2: Not all established processes can simply be applied to different materials

Nb-Ti cable for the FNAL Low-Beta quadrupole upgrade

Vendor used for Tevatron produced cable with 25% degradation!

Traced to excess strain on small strand (0.528mm)

Designing and fabricating cable is still an iterative process between the scientists/engineers and the technicians

See CEC/ICMC paper by Ian Pong. “FES/HEP Cable Test Facility Nb₃Sn Dipole Superconductor - Lessons Learnt and Key Challenges”
The Life and Death Story of D20

- The LBNL magnet, D20, encountered and overcame many of the issues with Nb$_3$Sn that we deal with today.
- After 6 years of design and fabrication, it achieved a record dipole field of 13.5T at 1.8K. That record held for more than two decades.
- Ironically, it almost killed the program

The consequence was that it caused a cultural shift in the R&D approach to accelerator magnet R&D that has spread throughout the community
Lesson: Simpler, faster R&D approach – mistakes become learning opportunities

- “Sub-scale” magnets are being used at CERN, LBNL, BNL, FNAL, KEK, IHEP, PSI

“Box” coil. Courtesy Michael Daly et al. from CHART at PSI.
Additive manufacturing supports the new R&D approach

• Stress is a limiting factor for materials beyond Nb-Ti
• Use of 3D printing to develop structures, practice winding and conductor tests

FNAL Stress-Managed Cos-Theta Magnet (Nb₃Sn and HTS)

Printed plastic Acura® Bluestone® mandrels
No impregnation
Lesson: Uncontrolled stress is your enemy

Standard collar and key structure forces high, room temperature preload that becomes a problem for high field magnets.
New support structure developed for strain sensitive material

Requires tighter tolerances than Nb-Ti as well

LBNL Bladder and Key
- Lower room temperature preload
- Better control
- Quicker assembly and disassembly for R&D

Cool-down
Lorentz forces

Keys
Bladder slots

Courtesy Helene Felice, CERN
Coil stress evolution for the two loading schemes

Traditional Collar and Key

Bladder and Key

Courtesy Paolo Ferracin, LBNL
A new set of lessons to learn - HTS

How do we realize the potential of these highly performing materials in magnets?

- Excellent high field properties
- No Training!
- Strain sensitive
- Highly stable but makes quench detection/magnet protection difficult
- Expensive

- Bi-2212
 - Complex reaction process

- REBCO
 - Flat, anisotropic tape – field quality, winding
 - Challenging to make high current, windable cables with current sharing

Active R&D programs world-wide but still in a very early stage with respect to accelerator magnet applications
Challenges and lessons of Bi-2212

- Highly reproducible performance
 - No degradation due to quenches or thermal cycles
 - No training
 - No thermal runaway due to mechanical disturbances

Bi-2212 leakage during reaction
(a) is mullite-only insulation
(b) Addition of TiO$_2$ reduces leaks
Leakage primarily at edges

Courtesy Tengming Shen, LBNL
Challenges and lessons of REBCO

- **LBNL C2 REBCO Canted-Cosine-theta**
 - 65 mm ID, 127 mm OD, 0.6 m long
 - 3 T designed dipole field at 4.2 K at 6.4 kA
 - Aluminum bronze machined mandrels
 - Painted Stycast after winding
 - Magnet used 100 m long 30-tape CORC® wire
 - 5 km of 2 mm wide SuperPower tapes with 30 µm substrates
 - 30 mm minimum bending radius
 - Thermal runaway observed during test
 - Led to some degradation.

Lesson Learned: With small models you can break it and do it again quickly

Courtesy Xiaorong Wang, LBNL
REBCO demands a totally different approach to accelerator magnets

• Best to avoid quenching

• Persistent currents contribute to field errors and stress but can be controlled.

• HTS magnets can be run over short sample and can be stable up to the point when heating overcomes cooling.

• Stress is concentrated where the current runs, at the edges. This is where degradation starts.

Courtesy Glyn Kirby, Jeroen van Nugteren, CERN

See https://www.researchgate.net/profile/G_Kirby
The LHC High Luminosity Upgrade – A great opportunity to learn

- **Nb₃Sn**
 - High Temperature heat treatment
 - Epoxy impregnation
 - Strain sensitivity implies careful handling and structural loading

- Reaction requires replacing epoxy composite end parts with Al₂O₃ plasma coated stainless steel – more susceptible to shorts and it was found that hi-pot limits used in the R&D program were insufficient for the larger Hi-Lumi quads

- Aluminum shell support structure with non-conformity was used based on previous experience from R&D program – it failed

- In R&D programs and small projects there is no opportunity to get very far up the learning curve, leading to small but sometimes critical, mistakes. The only thing to do is to recover as quickly as possible.

Courtesy Giorgio Ambrosio, FNAL
Some general lessons

• Simple extrapolation from what was done before doesn’t always work
 • Evaluate each new phase of a program independently

• Always seek out the experts.* They are usually very willing to help.
 • Your problem might already have been solved

• Many critical steps dictate the need for high quality, experienced technicians
 • Do not underestimate this point – (the best plumber doesn’t make the best car mechanic)
 • Trust them and include them in every aspect of the project they are involved in
 • Give them responsibility and they will accept accountability
 • Acknowledge them

*Someone who has made more mistakes than you
Acknowledgment

Many thanks to . . .

• Shlomo Caspi, Dan Dietderich, Paolo Ferracin, Ian Pong, Tengming Shen, Xiaorong Wang – Lawrence Berkeley National Laboratory

• Emanuela Barzi, Giorgio Ambrosio, Alexander Zlobin, Fermi National Accelerator Laboratory

• Bernhard Auchmann, PSI

• Helene Felice, Glyn Kirby, CERN