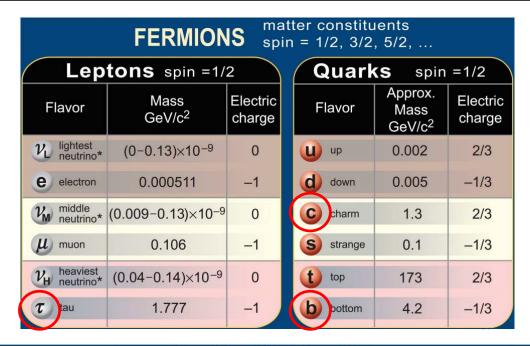


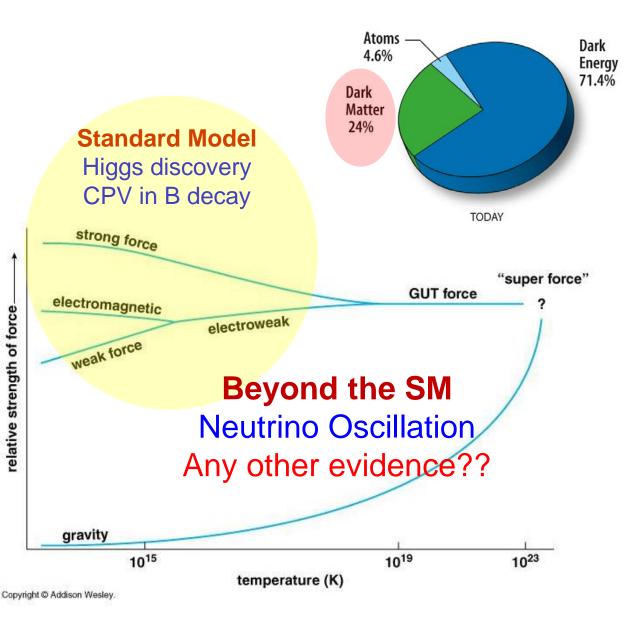
The Belle II Experiment


천병구 (한양대)

On behalf of the Belle II Collaboration

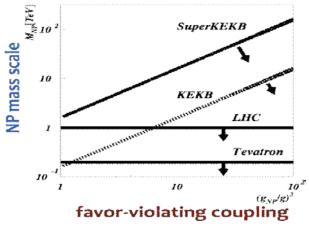
KPS-DPF Workshop, Nov/3-4/2020

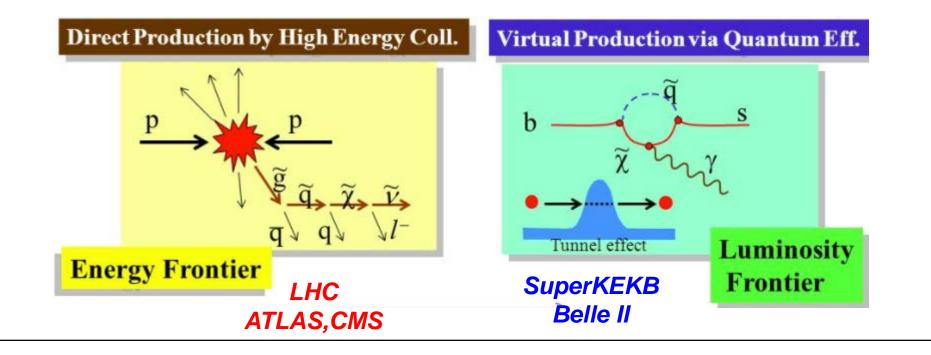
Why SuperKEKB/Belle II ?



Properties of the Interactions

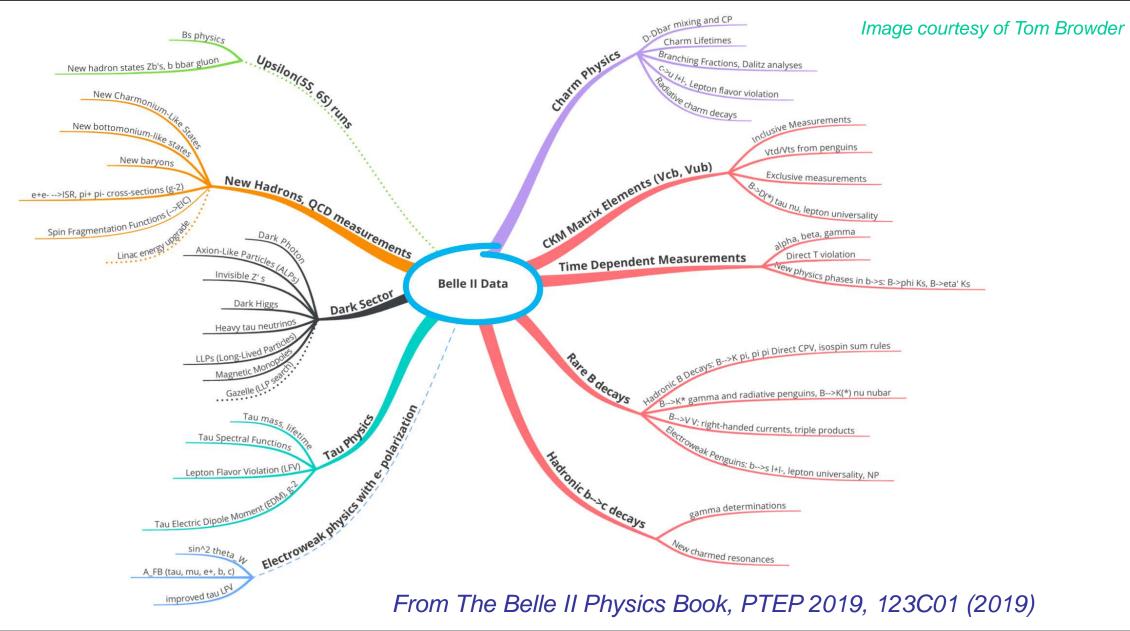
The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.


Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction weak)	Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at $\int 10^{-18} m$	10 ⁻⁴¹	0.8	1	25
3×10 ⁻¹⁷ m	10-41	10-4	1	60



Why SuperKEKB/Belle II ?

- No evidence of New Physics from LHC
 - After Higgs particle discovery in 2012
- New Physics beyond the Standard Model
 - Direct new particle production : ATLAS/CMS @LHC
 - Indirect new particle contribution : Belle II @SuperKEKB



LHC 실험과 Belle II 실험의 상보성

Belle II Physics "Mind Map" for Snowmass-2021

Belle II @ SuperKEKB

Belle II @ Super-KEKB

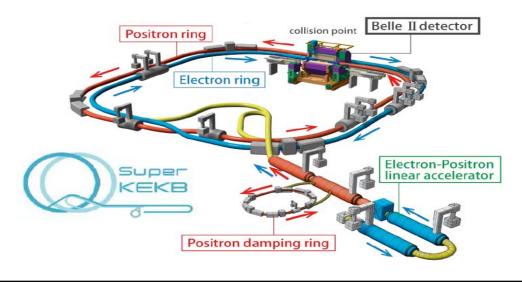
Intensity frontier B-factory experiment, Successor to Belle @KEKB (1999-2010)

1km

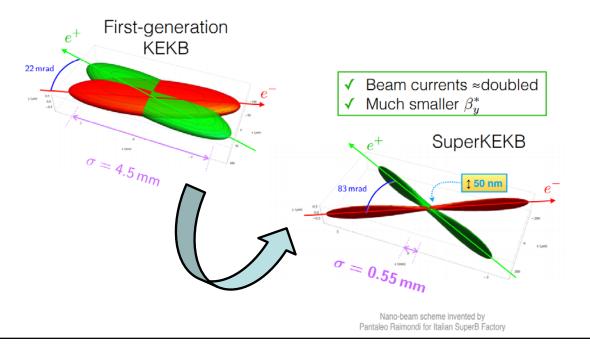
 Belle II
 7 GeV e⁻, 4 GeV e⁺

 Belle II
 E_{CM} Y(4S) = 10.58 GeV + scans

Y(4S) → B anti-B


B+Charm + τ factory

1050 Belle II collaborators from 120 institutions in 26 countries


Belle II @ SuperKEKB

- Successor to Belle at KEKB (1.05 ab⁻¹)
- No enough Belle data for the New Physics beyond the SM
- Plan to collect **50** ab⁻¹ of collisions at and near Y(4S)
- SuperKEKB instantaneous luminosity goal is 8 x 10³⁴/cm²/sec

	E(GeV) e+ / e-	β* _y e+ / e-	l(A) e+ / e-	Peak £ (cm ⁻² s ⁻¹)
KEKB	3.5 / 8.0	5.9 / 5.9	1.6 / 1.2	2.1 × 10 ³⁴
SuperKEKB	4.0 / 7.0	0.27 / 0.30	3.6 / 2.6	80 × 10 ³⁴

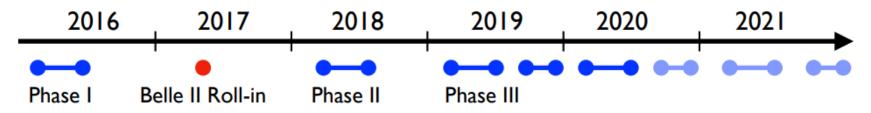
- <u>Beam current: ×2 (High RF power)</u>
- <u>Beam size: 1/20 (Nano-beam; low emittance, compact and strong focusing quads; QCS)</u>

The Belle II detector

Superconducting solenoid (1.5 T) K_L and µ detector Resistive plate chamber (outer barrel) ✓ Higher event rate :TRG/DAQ Electromagnetic calorimeter Scintillator + MPPC CsI(TI), waveform sampling ✓ Improved vertexing/tracking (inner 2 barrel layers, end-caps) ✓ Improved Particle-ID (K/ π /p) article ID detectors TOP (Time-of-Propagation) counter (barrel) ✓ Better beam background Aerogel RICH (forward end-cap) insensitivity Tracking detector Drift chamber (He + C_2H_6) of small cell, longer lever arm, with fast readout electronics Silicon vertex

Siliconvertex cete

- 1→2 layers DEPFET (pixel)
- 4 outer layers DSSD


Belle II Technical Design Report arXiv:1011.0352

Readout (TRG & DAQ): Max. 30kHz Hardware trigger rate ~100% efficient for Y(4S) hadronic events. 1MB(PXD)+100kB(others) per event → over 30GB/sec to record Offline computing: Distributed over the world via GRID

Belle II Operation

SuperKEKB/Belle II Operation History

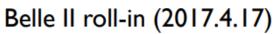
Phase I (w/o QCS/Belle II)

 Accelerator tuning w/ single beams

Phase 2 (w/ QCS/Belle II but w/o VXD)

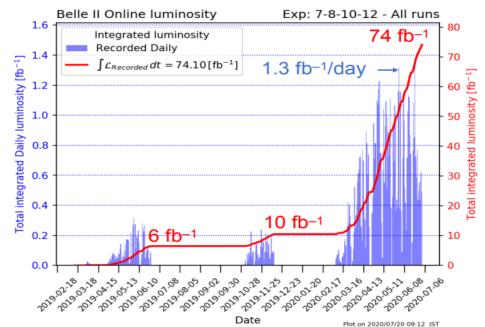
- Verification of nano-beam scheme
- Understand beam background
- Collision data w/oVXD

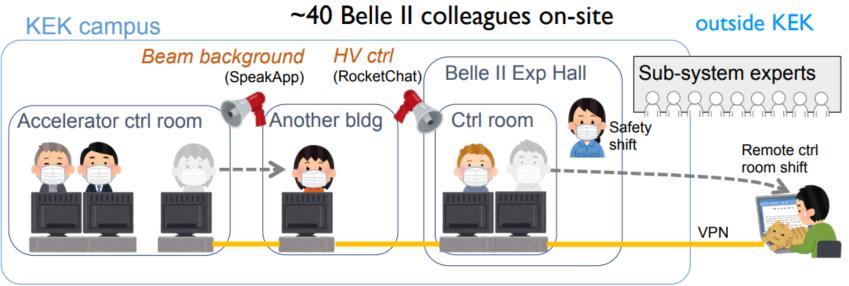
Phase 3 (w/ full detector)


• Production of physics data

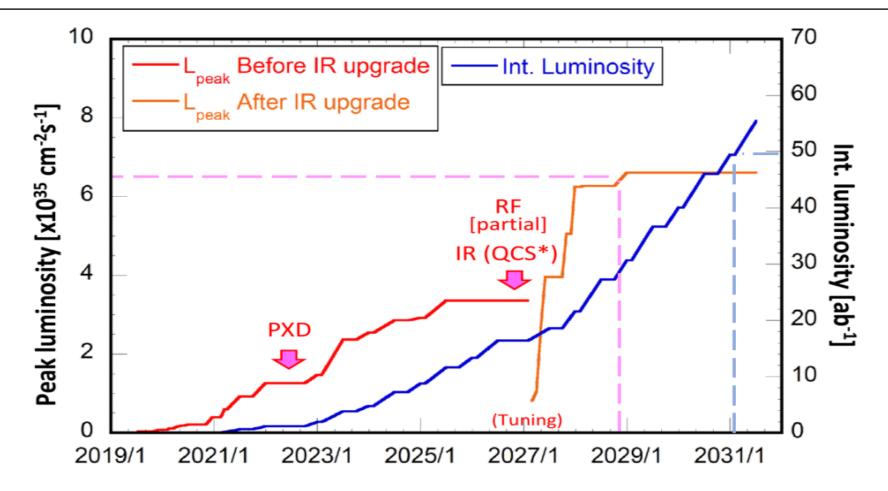
Installation of VXD

Phase 3 physics run (2019.3.25~)





Belle II operation status


- Collected 74 fb⁻¹ by last summer
- World record peak luminosity
 - 2.4 x 10³⁴ /cm²/sec (June 15th 2020)
- Data taking continued in 2020 against COVID-19 pandemic with caution
- Resumed Belle II operation in October
- Expect to collect 100 fb⁻¹ by December
- Expect to collect ~ 1 ab⁻¹ by JFY2021

Plan for the Long-term Operation

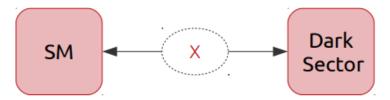
2 steps

╋

2 steps

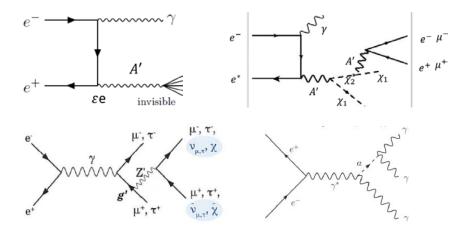
- Intermediate peak luminosity : (1-2 x10³⁵/cm²/sec, 5 ab⁻¹)
- High peak luminosity : (6.5 x 10³⁵/cm²/sec, 50 ab⁻¹) with a detector upgrade
 - Beam polarization upgrade, advanced R&D
- Ultra high luminosity : (4 x 10³⁶/cm²/sec, 250 ab⁻¹), R&D project

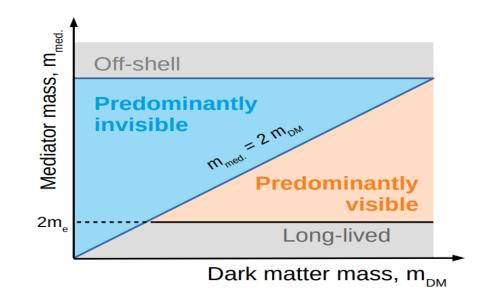
Belle II Results


Belle II Physics Results

- Many re-discoveries and performance studies on Phase 2 data
- 2 Dark Sector PRL publications on Phase 2 data in 2020
 - Search for an Invisibly Decaying Z' Boson at Belle II in $e^+e^- \rightarrow \mu^+\mu^-(e^+\mu^-)$ Plus Missing Energy Final States
 - Search for Axionlike Particles Produced in e⁺e⁻ Collisions at Belle II
- 12 spring/summer conference papers in 2020
- Getting ready to produce competitive results in B, charm, tau decays
- More information available here

Dark sector search @ Belle II




In recent years the possibility that both DM and the particles mediating its interactions to the Standard Model (SM) have a mass of MeV to GeV–scale has gained much attraction.

• There is a small number of possible portals between dark sector and standard model:

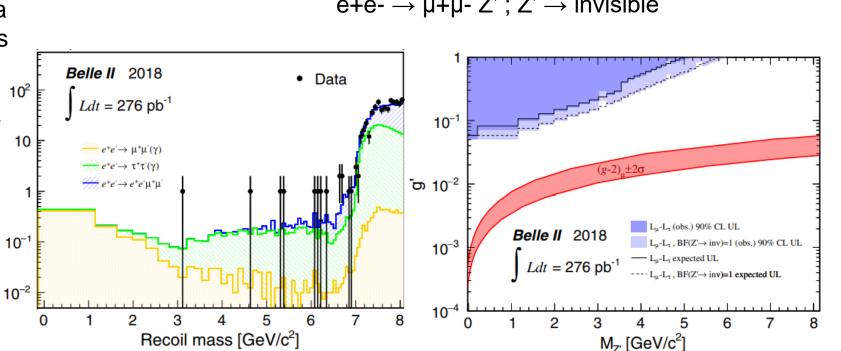
VECTOR PORTAL (dark photon A', dark Z', iDM);
 PSEUDO-SCALAR PORTAL (Axion-Like particle);
 SCALAR PORTAL (dark scalars, extended higgs model);
 NEUTRINO PORTAL (sterile neutrino)

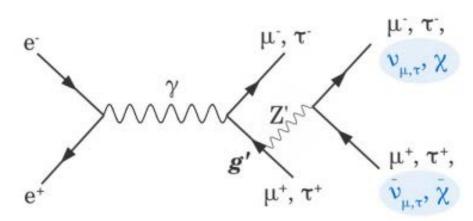
Belle II has a perfect environment where to search for dark matter or mediators :

- ✓ Hermetic 4π -detector and well-known initial conditions;
- ✓ Minimal background from collision pile-up;
- ✓ Excellent PID;
- Dedicated triggers for low multiplicity events

Search for $Z' \rightarrow$ Invisible

 $L_u - L_\tau$ model* :

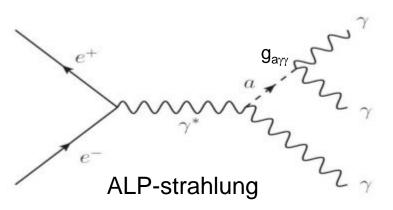

- suggest new light gauge boson Z' only interacting with the second and the third generation of leptons;
- would explain (g-2), anomaly, $b \rightarrow s\mu\mu$ anomalies

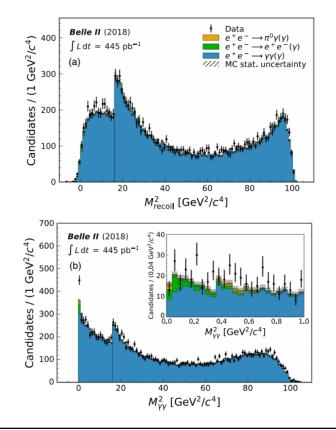

* Shuve et al. (2014), arXiv:1403.2727; Altmannshofer et al. (2016), arXiv: 1609.04026

Experimental procedure :

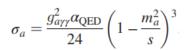
- Used only 0.276 fb⁻¹ of Phase 2 data
- Looking for a peak in the recoil mass distribution against µµ lepton pair
- Nothing else in the rest of the event ^{10²}
- No excess observed; 90% CL upper limit on coupling constant g': Counts first result ever

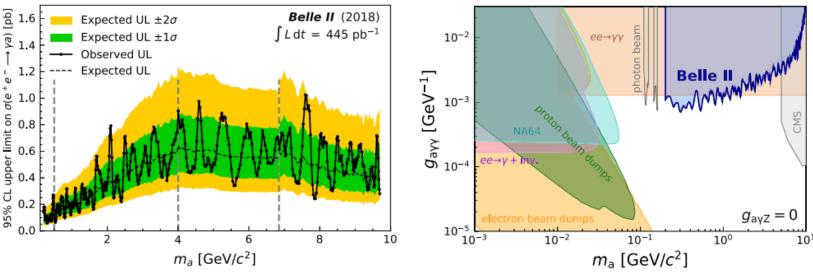
PRL124, 141801 (2020) Belle II 1st physics paper




 $e+e- \rightarrow \mu+\mu- Z'$; $Z' \rightarrow invisible$

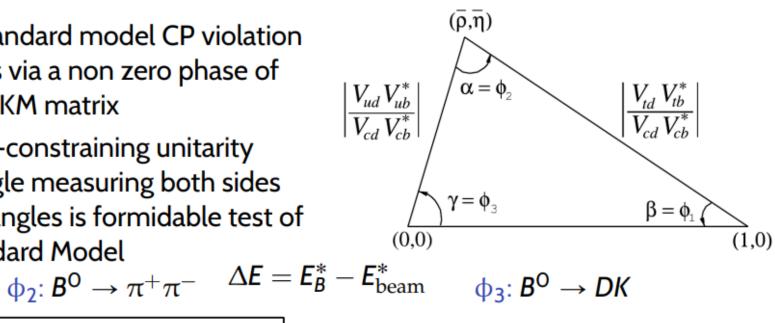
Search for Axion-Like Particle (ALP)

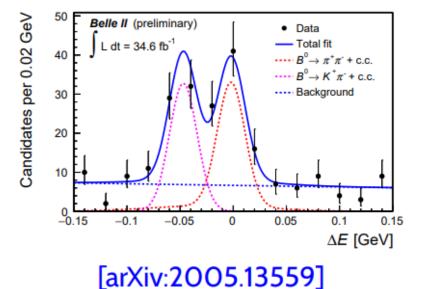

- ALPs are pseudo-scalars particles coupled with SM photons.
- Possible dark sector mediator and impact on $(g-2)_{\mu}$ if MeV-GeV range
- Used 0.445 fb⁻¹ of Phase 2 data
- Looking for 3-photon final state via ALP-strahlung
- Search for a bump in recoil and di-photon mass distribution

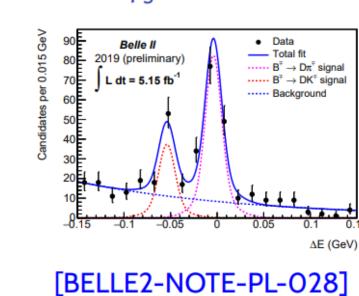


PRL 125, 161806 (2020)

- No excess observed, set 95% CL upper limit on the ALP-photon coupling
- Limit on $g_{a\gamma\gamma}$ assuming BF($a \rightarrow \gamma\gamma$) = 100%



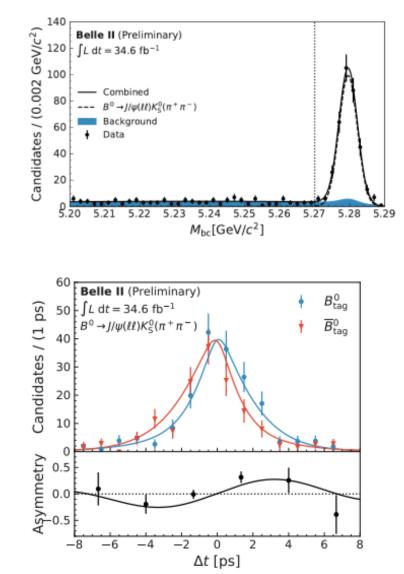




Measurement of CKM parameters

- In Standard model CP violation arises via a non zero phase of the CKM matrix
- Over-constraining unitarity triangle measuring both sides and angles is formidable test of Standard Model

CPV measurement

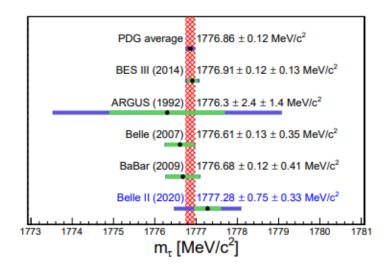


[BELLE2-NOTE-PL-2020-011]

- Reconstruct $B^{0} \rightarrow J/\psi K_{s}^{0}$ with $J/\psi \rightarrow \mu^{+}\mu^{-}$, $e^{+}e^{-}$
- use w from previous slide

 $\begin{aligned} sin(2\phi_1)sin(\Delta m_d\Delta t)(1-2w) * \mathcal{R}(\Delta_t) &= \\ & \frac{N(B^O_{tag}) - N(\bar{B}^O_{tag})}{N(B^O_{tag}) + N(\bar{B}^O_{tag})}(\Delta t) \\ & sin(2\phi_1) = 0.55 \pm 0.21 \pm 0.04 \end{aligned}$ Belle II already able to see first 2.7 σ hint for

time-dependent CPV


Tau mass measurement

• Select $\tau \to 3\pi\nu$ decays in $e^+e^- \to \tau^+\tau^-$ • Estimate mass by fitting edge of the pseudo-mass $M_{\min} = \sqrt{M_{3\pi}^2 + 2(E_{beam}^* - E_{3\pi}^*)(E_{beam}^* - P_{3\pi}^*)}$

$m_{ au} =$ 1777.28 \pm 0.75 \pm 0.33 MeV (PDG: 1776.86 \pm 0.12 MeV)

Systematic uncertainty	MeV/c^2
Momentum shift due to the B-field map	0.29
Estimator bias	0.12
Choice of p.d.f.	0.08
Fit window	0.04
Beam energy shifts	0.03
Mass dependence of bias	0.02
Trigger efficiency	≤ 0.01
Initial parameters	≤ 0.01
Background processes	≤ 0.01
Tracking efficiency	≤ 0.01

M_{min} [GeV/c²]

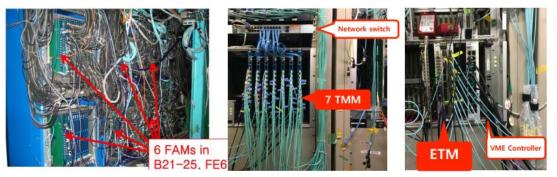
[axXiv:2008.04665]

Belle II (Preliminary)

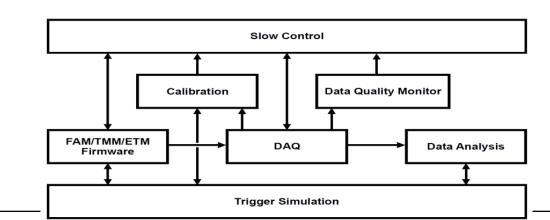
Ldt = 8.8 fb⁻¹

m_r = 1777.28 ± 0.75 MeV/c²

Belle II Korean Group


Belle II Korean Group

KB2GM



- 참여: 9개 기관 46명 고려대,경북대,경상대,서울대,숭실대, 연세대,전남대,한양대,KISTI
- 한국그룹 전체 미팅: 2~3회/년
- Belle II contribution :
- **ECL Calorimeter Trigger Construction**
- **CDC Track Trigger Firmware**
- **SVD Vertex Detector Assembly**
- **DAQ Slow Control**
- **Data Production and Geant4 validation**
- Data Handling System using AMGA

Workflow of ECL trigger system

• Belle II 분담금 : ~1억원/년 ; 연구재단 해외대형시설활용과제 수행

[세부 1] Belle II 실험의 전자기열량계 트리거 운용 연구 및 총괄지원 관리 [세부 2] Belle II 실험의 궤적트리거 운용 및 매혹입자 붕괴 연구 [세부 3] Belle II 실험의 실리콘검출기 운용 및 실험 데이터분석 연구 [세부 4] Belle II 실험의 시뮬레이션 소프트웨어 최적화 및 매혹입자 희귀붕괴 연구 [세부 5] SuperKEKB 충돌형 가속기의 빔 궤도 안정화 연구 [세부 6] Belle II 실험의 B 중간자 희귀붕괴 탐색과 암흑섹터 연구 [세부 7] Belle II 실험을 통한 XYZ 미지입자 연구 [세부 8] Belle II 실험을 통한 경입자 맛깔 구조 및 새로운 물리 탐색 연구

- Belle II aims to find the New Physics with ultimate precision measurement of heavy flavor decays, and dark matter search as well.
- Achieved
 - Nano-beam collision successfully
 - 74 fb⁻¹ data collection by summer 2020
 - World highest peak luminosity record in June 2020
- Promising
 - World leading results for dark sector physics
 - To surpass Belle/BaBar data size by 2021
- Plan to accumulate 50 ab⁻¹ around 2030

감사합니다.

- 2 Dark Sector PRL publications on Phase2 data:
 - Search for an Invisibly Decaying Z' Boson at Belle II in e⁺e⁻ → µ⁺µ⁻(e[±]µ[∓]) Plus Missing Energy Final States, PRL 124, 141801 (2020);
 - Search for Axionlike Particles Produced in e⁺e[−] Collisions at Belle II, PRL 125, 161806 (2020);

12 conference papers based on up to ~38 fb⁻¹ of data:

- Charmless B decay reconstruction, arXiv:2005.13559 [hep-ex];
- → Measurement of the branching fraction B(anti-B⁰ → D^{*+} l⁻ v₁), arXiv:2004.09066 [hep-ex];
- Measurement of the B⁰ lifetime using fully reconstructed hadronic decays, arXiv:2005.07507 [hep-ex];
- Measurement of the branching ratios of $B^0 \rightarrow D^{(*)-} l^+ \nu$ (untagged analysis), arXiv:2008.07198 [hep-ex];
- Calibration of the Belle II hadronic Full Event Interpretation (FEI), arXiv:2008.06096 [hep-ex];
- → Measurement of the hadronic mass moments of B → $X_c l^+ v$ decays, arXiv:2009.04493 [hep-ex];
- Measurement of the branching ratios of $B^0 \rightarrow D^{*-} l^+ v$ (using the hadronic FEI), arXiv:2008.10299 [hep-ex];
- Rediscovery of $B^0 \rightarrow \pi^- l^+ \nu$ (using the hadronic FEI), arXiv:2008.08819 [hep-ex];
- Calibration of the Belle II B FlavorTagger, arXiv:2008.02707 [hep-ex];
- → Rediscovery of B → ϕ K^(*) decays, and measurement of the longitudinal polarization fraction of B → ϕ K^{*}, arXiv:2008.03873 [hep-ex];
- → Branching ratios and direct CP asymmetries of B → Charmless decays, arXiv:2009.09452 [hep-ex];
- Measurement of the τ lepton mass, arXiv:2008.04665 [hep-ex];

Spring

• $b \rightarrow s inv$

• B $\rightarrow \Lambda$ + inv.

(interpretation of b-physics

golden channel $B \rightarrow K^{(*)}vv$).

• $\Upsilon(1S) \rightarrow \{ \text{ inv. } | \gamma + \text{ inv. } \}$

We have a lot of analyses planned

Just to give you an idea

- ee $\rightarrow \mu \mu$ Z'; { Z' \rightarrow inv. | Z' \rightarrow ll | Z' \rightarrow 4 μ }
- ee $\rightarrow \mu e Z'$; { Z' $\rightarrow inv. | Z' \rightarrow \ell \ell$ }
- ee $\rightarrow \gamma$ A'; { A' \rightarrow inv. | A' \rightarrow $\ell\ell$ }
- ee \rightarrow { γ a | ee a }; a $\rightarrow \gamma\gamma$
- ee \rightarrow h' A'; A' \rightarrow $\ell\ell$
- b → s { h' | a }
- ee $\rightarrow \gamma$ + DM; DM \rightarrow A + inv.; A' \rightarrow { ee | $\mu\mu$ | $\pi\pi$ }; "Inelastic dark matter".
- Dark QCD final states.
- Long lived (& very) long lived particles: generic displaced vertices.
- $ee \rightarrow ee\pi^0$; light hadronic form factor
- ee $\rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}(\gamma)$; for (g–2)_µ
- ee $\rightarrow e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$
- $^{\bullet}~ee \rightarrow \tau\ell$
- ee \rightarrow { μe | $\mu \tau$ } + missing

Page 5

Belle II vs LHCb

Observable	SM	Theory	Present	Future	Future
0000110010	prediction	error	result	error	Facility
$ V_{us} ~~[K \to \pi \ell \nu]$	input	$0.5\% \rightarrow 0.1\%_{\rm Latt}$	0.2246 ± 0.0012	0.1%	K factory
$ V_{cb} $ $[B \rightarrow X_c \ell \nu]$	input	1%	$(41.54\pm0.73)\times10^{-3}$	1%	Super-B
$ V_{ub} $ $[B \rightarrow \pi \ell \nu]$	input	$10\% \to 5\%_{\rm Latt}$	$(3.38\pm 0.36)\times 10^{-3}$	4%	Super-B
$\gamma \qquad [B \to DK]$	input	$< 1^{\circ}$	$(70^{+27}_{-30})^{\circ}$	3°	LHCb
$S_{B_d \to \psi K}$	$sin(2\beta)$	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb
$S_{B_s \to \psi \phi}$	0.036	$\lesssim 0.01$	$0.81\substack{+0.12\\-0.32}$	0.01	LHCb
$S_{B_d \to \phi K}$	$\sin(2\beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb
$S_{B_s \to \phi \phi}$	0.036	$\lesssim 0.05$	—	0.05	LHCb
$S_{B_d \to K^* \gamma}$	few \times 0.01	0.01	-0.16 ± 0.22	0.03	Super-B
$S_{B_s \to \phi \gamma}$	few \times 0.01	0.01	—	0.05	LHCb
A^d_{SL}	-5×10^{-4}	10^{-4}	$-(5.8\pm 3.4)\times 10^{-3}$	10^{-3}	LHCb
$A^s_{\rm SL}$	$2 imes 10^{-5}$	$< 10^{-5}$	$(1.6\pm 8.5)\times 10^{-3}$	10^{-3}	LHCb
$A_{CP}(b \rightarrow s\gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super-B
$\mathcal{B}(B \to \tau \nu)$	$1 imes 10^{-4}$	$20\% \to 5\%_{\rm Latt}$	$(1.73\pm 0.35)\times 10^{-4}$	5%	Super-B
$\mathcal{B}(B \to \mu \nu)$	4×10^{-7}	$20\% \to 5\%_{\rm Latt}$	$< 1.3 \times 10^{-6}$	6%	Super-B
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$3 imes 10^{-9}$	$20\% \to 5\%_{\rm Latt}$	$<5\times10^{-8}$	10%	LHCb
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	$1 imes 10^{-10}$	$20\% \to 5\%_{\rm Latt}$	$< 1.5 \times 10^{-8}$	[?]	LHCb
$A_{\rm FB}(B\to K^*\mu^+\mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb
$B\to K\nu\bar\nu$	4×10^{-6}	$20\% \to 10\%_{\rm Latt}$	$< 1.4 \times 10^{-5}$	20%	Super-B
$ q/p _{D-\text{mixing}}$	1	$< 10^{-3}$	$(0.86^{+0.18}_{-0.15})$	0.03	Super-B
ϕ_D	0	$< 10^{-3}$	$(9.6^{+8.3}_{-9.5})^{\circ}$	2°	Super-B
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	8.5×10^{-11}	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory
$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$	2.6×10^{-11}	10%	$<2.6\times10^{-8}$	[?]	K factory
$R^{(e/\mu)}(K \to \pi \ell \nu)$	2.477×10^{-5}	0.04%	$(2.498\pm 0.014)\times 10^{-5}$	0.1%	K factory
$\mathcal{B}(t \to c Z, \gamma)$	$O(10^{-13})$	$O(10^{-13})$	$< 0.6 \times 10^{-2}$	$O(10^{-5})$	LHC $(100 fb^{-1})$

- Belle II: clean environment: efficient detection of neutrals (γ, π^0, η)
- Belle II: quantum correlated B⁰B⁰ pairs: flavor tagging is more efficient (34% vs 3%)
- Belle II: full reconstruction:
 b →u transition
- LHCb: large X-section

Belle II vs LHCb

Belle (II)

e⁺e⁻→Y(4S)→bb atY(4S): 2 B's (B⁰ or B⁺) and nothing else ⇒ clean events (flavour tagging, B tagging, missing energy

 $\sigma_{b\overline{b}} \sim 1 \text{ nb} \Rightarrow 1 \text{ fb}^{-1} \text{ produces } 10^6 \text{ B}\overline{\text{B}}$ $\sigma_{b\overline{b}}/\sigma_{total} \sim 1/4$

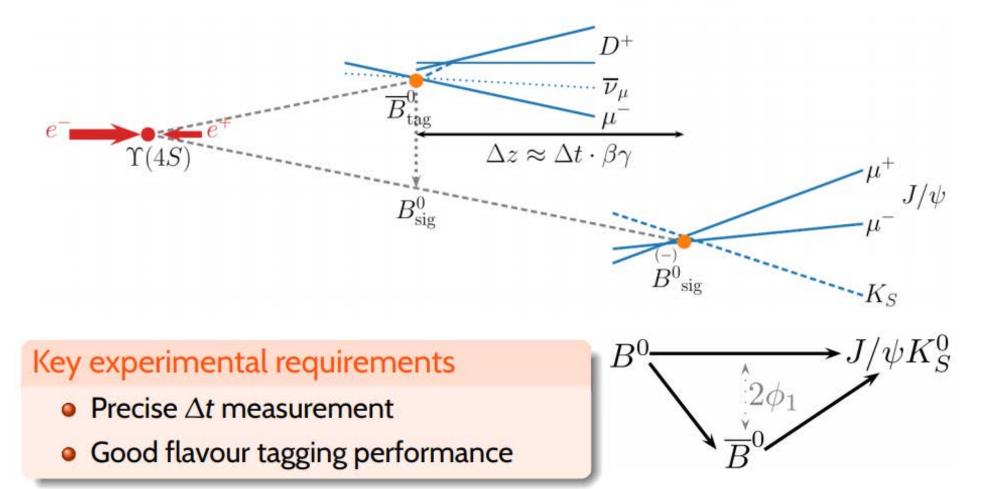
LHCb

 $pp \rightarrow b \overline{b} X$ production of B^+ , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event \Rightarrow lower reconstruction efficiencies

 $\sigma_{{}_{b\overline{b}}}$ much higher than at the $Y(4\,S)$

	√s [GeV]	σ _{ьб} [nb]	$\sigma_{_{bb}}/\sigma_{_{tot}}$
HERA pA	42 GeV	~30	~10 ⁻⁶
Tevatron	2 TeV	5000	~10 ⁻³
LHC	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
	14 TeV	~6x10 ⁵	~10 ⁻²

b $\overline{\mathbf{b}}$ production cross-section at IHCb ~ 500,000 × BaBar/Belle !!


$$\begin{split} \sigma_{b\overline{b}}/\sigma_{total} & \text{much lower than at the } Y(4S) \\ \Rightarrow & \text{lower trigger efficiencies} \\ \textbf{B mesons live} & \textbf{relativey long} \\ \textbf{mean decay length } \beta \gamma c \tau \sim 200 \, \mu \text{m} \\ \textbf{data tal} & \textbf{mean decay length } \beta \gamma c \tau \sim 7 \, \textbf{mm} \\ \textbf{data tal} & \textbf{ing period(s)} & (\text{displaced vertices}) \\ & [1999-2010] = 1 \text{ ab}^{-1} & [run I: 2010-2012] = 3 \text{ fb}^{-1}, \\ & [2019-...] = ... & (\textbf{near}) & \textbf{future} \\ & [Belle II from 2019] \Rightarrow 50 \text{ ab}^{-1} & [LHCb upgrade from 2021] \end{split}$$

Measurement of sin(2 ϕ_1 **)**

Golden channel for Belle II

•
$$sin(2\phi_1)sin(\Delta m_d \Delta t)(1-2w) * \mathcal{R}(\Delta_t) = \frac{N(B_{tag}^O) - N(B_{tag}^O)}{N(B_{tag}^O) + N(\bar{B}_{tag}^O)}(\Delta t)$$

