

Search for millicharged particles at J-PARC

Jae Hyeok Yoo (Korea University) 12/04/2020

2020 Meeting of the Division of Particles and Fields of the Korean Physical Society

Motivation

 $\mathcal{L}_{ ext{dark sector}}$

$$= -\frac{1}{4}A'_{\mu\nu}A'^{\mu\nu} + i\bar{\psi}\left(\partial \!\!\!/ + ie' \!\!\!/ A' + iM_{\rm mCP}\right)\psi - \frac{\kappa}{2}A'_{\mu\nu}B^{\mu\nu}$$

$$A'_{\mu} \to A'_{\mu} + \kappa B_{\mu}$$

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} \qquad \qquad \text{K = 10-3 - 10-2 : milli-charge} \\ + i \bar{\psi} \left(\partial \!\!\!/ + i e' \!\!\!/ A' + i \kappa e' \!\!\!/ B + i M_{\mathrm{mCP}} \right) \psi$$

- Arbitrary charges are allowed in SM U(1), but only quantized charges have been found
 - Motivated Dirac quantization and considerations of GUTs => magnetic monopoles
- Well-motivated dark-sector models have been proposed to predict the existence of millicharged particles (mCPs) while preserving the possibility for unification
 - Such models can contain a rich internal structure, providing candidate particles for dark matter
- A new U(1) in dark sector with massless dark-photon (A') and massive dark-fermion (ψ)
 - A' and B kinetically mix => charge of ψ is proportional to mixing (κ)
- Results of EDGES experiment (Nature 555, 67–70 (2018))
 can be explained if a fraction of DM is millicharged

Current reach

Current reach

Experiment at J-PARC: SUBMET

- SUBMET: SUB-Millicharge ExperimenT
- Scintillator-based detector in pp fixed target experiment at J-PARC
 - Inspired by milliQan (LHC) and FerMINI (Fermilab) experiments
 - Similar to FerMINI experiment: with lower beam energy (30 GeV) and larger N_{POT}
- Candidate site in the existing building 280 m from the target

J-PARC complex

280 m Detectors Neutrino monitor bld. On-axis INGRID

Potential detector site

INGRID

Production of mCPs

• mCP (χ) production via meson decays

$$\pi^0, \eta \to \gamma \gamma^* \to \gamma \chi \bar{\chi}$$

$$J/\psi \to \gamma^* \to \chi \bar{\chi}$$

- Number of mCPs (N_χ) that reach detector
 - $O(10^9)$ where exclusion limit is

Basic idea of mCP detection

hadrons dumped in beam dump

muons pass beam dump, but loose energy in sand (5 MeV/cm) neutrino monitor building

monitor

120 m

280 m

0 m

Only mCPs (and neutrinos) reach the detector (energy loss for mCP with Q=0.001e is <0.1 MeV)

Detector concept

- mCPs detected by ionization which depends on Q²
 - Need large active volume for small Q
 - In the end, the experiment becomes detecting SPEs
- 4 layers of long scintillator (BC-408, 5x5x80 cm³) +
 PMT arrays
 - 4 layers to suppress backgrounds
 - PMT to cover large area (dark count rate ~ 500 Hz)
- Well-understood technology
 - Similar version of detector tested/operated by milliQan demonstrator PRD 102, 032002 (2020)
- Signal acceptance is $O(10^{-4})$
- Require 4-layer coincidence ($\Delta t \sim 20 \text{ ns}$)

Backgrounds

Beam-induced backgrounds

- Muons from hadron decays do not reach detector due to energy loss
- Neutrino interactions: $O(10^7)$ /layer for $N_{POT}=10^{22}$ gives $N_{bkg}\sim 0$
- Muons from interaction of neutrinos and the material of the building can be identified/rejected by installing scintillator plates between the wall and the detector

Detector backgrounds

Random coincidence expected to be negligible (thanks to using 4 layers)

Other sources

- Cosmic shower (needs in situ measurement)
- Non-beam-induced backgrounds can be estimated using no-beam data
- Assume $N_{bkg} \sim O(1)$ for sensitivity study

Sensitivity of SUBMET

Alternative detector configurations I

nominal design

N _X	N _{PE}	b	Exclusion limit on ε for $N_{\chi} = 10$ MeV
x1	x1	x 1	2.6 x 10 ⁻⁴
x2	x 1	x 1	2.4 x 10 ⁻⁴
x1/50	x 1	x 1	3.9 x 10 ⁻⁴
x1	x 1	x100	3.0 x 10 ⁻⁴
x 1	x2	x 1	1.9 x 10 ⁻⁴
x 1	x 3	x 1	1.7 x 10 ⁻⁴

- Explored alternative detector configurations $N_{\!\chi}$
- Estimated exclusion limit for 10 MeV mCP by changing 3 parameters
 - N_{χ} : detector volume, duration of data-taking
 - N_{PE} (number of photoelectrons): different scintillating material, length of each scintillator, different photodetectors
 - b (number of backgrounds): different photodetector, unexpected radiation
- Main driver is N_{PE}
 - N_χ and b have small impact => duration of data-taking, detector size, and backgrounds do not matter much
 - Even N_{PE} does not make a huge difference, though
- Overall, performance similar despite large variations
 - Due to steep decrease of probability to detect mCPs ($1 e^{-N_{PE}}$)

Alternative detector configurations II

- Use SiPM instead of PMT: two challenges area coverage and DC
- Area coverage
 - SiPMs are small...
 - Use light guide + 1 cm² SiPM coverage
- Dark count
 - Order of MHz/cm² at room temperature
 - Electric cooling to -20 deg + correlation with beam timing (duration of one packet = a few μs): can reduce random coincidence to <1 per year
- Increase the number of layers, but still require 4 layer coincidence
 - Help by combinatorics, e.g., with 8 layers, N_{γ} becomes $\times O(100)$
 - Random coincidence still under control: a few in 3 years
- Using higher light yield scintillator, e.g. BGO, with 20 cm length and 8 layers, exclusion limit on ϵ for N_{χ} = 10 MeV can extend down to ~10-4 (nominal 2.6 x 10-4)

Sensitivity of SUBMET

Current status and plan

Letter of Intent: Search for sub-millicharged particles at J-PARC

Suyong Choi¹, Jeong Hwa Kim¹, Eunil Won¹, Jae Hyeok Yoo¹, Matthew Citron², David Stuart², Christopher S. Hill³, Andy Haas⁴, Jihad Sahili⁵, Haitham Zaraket⁵, A. De Roeck⁶, and Martin Gastal⁶

¹Korea University, Seoul, Korea

²University of California, Santa Barbara, California, USA

³The Ohio State University, Columbus, Ohio, USA

⁴New York University, New York, New York, USA

⁵Lebanese University, Hadeth-Beirut, Lebanon

⁶CERN, Geneva, Switzerland

- Prepared LOI and submitted to J-PARC (arXiv:2007.06329)
 - Domestic (Korea Univ) and international collaborators (CERN, UCSB, OSU, NYU, LU)
 - Expertise from milliQan collaboration
- Next steps
 - Build/test prototype in Korea and at J-PARC
 - Get funding!
- Beam expected in 2022 after upgrade

Summary

- Designing an experiment to search for millicharged particles using 30 GeV proton beam at J-PARC
- Unique opportunity to probe low mass ($m_{\gamma} < 1.6$ GeV) millicharged particles
 - Sensitive to mCPs with $Q/e=3\times 10^{-4}$ in $m_\chi<0.2$ GeV and $Q/e=1.5\times 10^{-3}$ in $m_\chi<1.6$ GeV with 3 years of data
- Other proposals at FNAL (FerMINI) and LHC (milliQan, FORMOSA)
 - These proposals are not fully funded yet and/or targeting HL-LHC (>=2027)
- Low-hanging fruit we (Korea) should pick
 - Well-established technology
 - Can reach the best limit in low mass region within a few months of data-taking

Backup

Geometrical acceptance

Production => detection

Other proposals

- MilliQan
 - full HL-LHC data
- FerMINI
 - LSNF/DUNE
- FORMOSA
 - full HL-LHC data

Potential experiment site

- Thanks to the photos, we could find a potential site for the experiment
 - On B2 where NINJA working hut is set (red box)
- It is about 5-6 m from the beam axis
 - sensitivity would not be affected much
- We will need to make sure that the experiment does not interfere with the ongoing NINJA project