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DM Landscape: A Very Wide Mass Range

1022 eV keV MeV GeV 100Mg~10%8 eV
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Light DM Sector

1022 eV keV MeV GeV TeV PeV 100Mg~10%8 eV

» E~mv?< O(keV) withv~1073:  Light <+ Cosmogenic boostedDM searches: COSINE-100,

particle DUNE/ProtoDUNE, IceCube, SK/HK/KNO, ...
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» New ideas for low EX" w/ e-recoil are required!

D)

v Ionization by e-recoils (semiconductor)

[arXiv:1108.5383, 1509.01598] . .
% Beam-produced light DM/mediator searches:

Babar, BDX, Belle-1I, CCM, COHERENT, DUNE, FASER,
JSNS2, LDMX, MATHSULA, NA64, SeaQuest, SHiP, ...

v Ejection of e’s (graphene, C-nanotube)

[arXiv:1606.08849, 1706.02487, 1808.01892]

v Evaporation of He by nuclear-recoils
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Light DM: Direct Search Current Status
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Super-Light DM: Main Focus

1022 eV

% Various well-motivated super-light DM pheno.:
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Sterile neutrinos

[hep-ph/9303287, astro-ph/9810076]

Mirror v DM [hep-ph/9505385]
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Axino/gravitino [arXiv: 0902.0769, 1407.0017]
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Super-Light DM: Main Focus

1022 eV keV MeV GeV TeV PeV 100M5~10%8 eV

o

** Ek~mv2< O(eV)
Qqu rconductor

Inter-band scattering near threshold

= Very low E" required! Iql > w

- Sewm = B xS 1 Poser Crystud
. TES and OF cotection arentas (W)

% New ideas for very low Et" w/ e-recoil:

- Athenmal Proancn Codscton Fine (A)

v Superconductor target w/ TES or MKID 3
[arXiv:1504.07237, 1512.04533]
v Superfluid He w/ TES or MKID
[arXiv:1604.08206, 1611.06228] 0.5 am of Bans
: GaAs detector
v" 3D Dirac materials [arXiv:1708.08929] [arXiv: 1708.08929] [arXiv: 1712.06598]
v Polar materials w/ TES or MKID s "'~,_T, ‘::“a;;‘::::: [arXiv: 1903.05101]
[arXiv:1712.06598, 1807.10291]
v Superconducting-nanowire single-photon @ |

Hot-spot (i)

detector [arXiv:1903.05101]



Super-Light DM: Technologies

1022 eV keV MeV GeV TeV PeV 100Mg~10%8 eV

% Transition edge sensor (TES): X-ray ~ near-IR, E;;,~ sub-eV
% Microwave kinetic inductance device (MKID): X-ray ~ far-IR, E;;,~0(10 meV)

% Superconducting-nanowire single-photon detector (SNSPD): UV ~ mid-IR, E;,~0 (100 meV)

Well-developed in the laboratory in their respective E-bands.
But for the sensitivity to E;;, < meV, further R&D is needed!




@

<)

We proposed a new super-light DM direct detection strategy
adopting the graphene-based Josephson junction* (GJ.J)

microwave single photon detector.

* A “state-of-the-art” technology:

much lower E;;,~0(0.1 meV)




Graphene Josephson Junction Device

The device consists of a sheet of mono-layer
graphene two sides of which are joined to

superconductor, forming a superconductor-

normal metal-superconductor Josephson junction.

graph ene

Superconductor-Graphene-Superconductor (SGS)

% A GJJ single-photon detector was proposed, covering from near-IR to microwave.

% K.C. Fong, G.-H. Lee & their collaborators have demonstrated experimentally
that the GJJ microwave bolometer can have sensitivity to E~0.1 meV energy

deposit.

% Currently, a GJJ single-photon detector is under testing in the laboratory.



Detection Principle

Josephson junction
I. DM scatters off (;1-bond) free electrons, transferring some fraction of its incoming E,.

II. The recoiling e heats up & thermalizes with nearby e’s rapidly via e-e interactions.

ITI. The JJ is triggered: the temperature rise switches the zero-voltage of JJ to resistive state.

% E,~mv?~1meV for mpy, = 1 keV

=» The GJJ device can posses the sensitivity to the signal induced even by sub-keV DM.




Conceptual Design Proposal

I. Single graphene strip (a): the assembly of a

(a) Energy injection
‘ };%ZQ {HEAE gj? 5?,'1 e {. 5 AR graphene strip & a number of superconducting
EEE LB R
g sr‘rx/u’ék u/‘(r(l % c 7
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00 g gty s 0a8 8 Be gl material strips = an array of SC-graphene-SC-
2 aedeasnc saraaaes Cone
:"’gr{ﬁ OO nr"t. '9%8% 2" 5" 0%
700,000t Ro0geges  ese graphene-SC---- (SGSGS---).
*+Lsc *#—= L;; = 0.5 um
(b) -, - II. Each sequence of SGS represents a single GJJ device.

ITI. Full detector unit (b): all GJJs are connected in

series so that even a single switched GJJ allows the

series resistance measured between S & D to switch

from O to a finite value.

<+ E.y, is determined by the strip width W,;: W;; = 3 um (30 um) = E;;, = 0.1 meV (1 meV).

% A large-scale detector can be made of a stack of such detector units.
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To calculate experimental sensitivities, we should consider
the scattering between DM traveling in 3D & free electrons

living in 3D but confined in 2D graphene layer.




Calculating Signal Rates

< Goal: The event rate of DM scattering off free electrons in a 2-dimensional graphene sheet.

< Key point: An electron is still confined in the 2D graphene even after the collision.

=» No significant momentum change along the surface-normal (z-axis) direction.

=» Signal rate depending on the DM direction

< We will calculate the number of events/unit detector mass/unit run time:

total
N eve

Neve
M T trun

(NFotal: total number of events, My : total detector mass, t,,: total time exposure)



Calculation Procedure I
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Consistent with the assumption of no significant

momentum change along the surface-normal direction




Calculation Procedure II

2 2
2(9_17)("/”0 _e—V%sc/v%)

2 2
tvgerf(v Vo) —2Veccevesc/V0
0 esc 0 escC

+ Graphene-surface-parallel DM velocity profile: fyp(v,) =

= We take a plane-projection of a modified Maxwell-Boltzmann distribution.

. . . . . d>p |M2
%+ Event rate on a (sufficiently thin) 2D material: (nZPo,,viey) = [ (21'[))(3f Terming Son(Er, q)

< Structure function for the 2D system: S, (E,, q)

3 i 3
=2 C(lzz;l J izfszj m)8(pZ; — péf)2m)*$™® oy + Pei — Py — Pes) fei(Eei){1 = for(Eer))
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= 2m)8 (5, — Pyrf) - San(Er, q)
=» The Pauli blocking effects(=phase space suppression) are encoded in the structure function.

The analytic expression for S;p(E,, q) is available in the non-relativistic limit

[astro-ph/9710115, 1512.04533].



Calculation Procedure III
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<+ We assume that DM interacts with electrons via an exchange of mediator ¢ as done in many

of the preceding studies:

2 42 42
gegx lie)( > heavy _ gegxﬂex f 2 llght 9eJdy Hey 2 2
r ~ — for
Oey = = A7) Oy — 0 (mqb »> q°) & o g+ 10 (m¢ K q°)

|2 2

< The matrix element | M|* is related to the scattering cross section as g, = oz Mex
e X

% From the linear dispersion of graphene: Er = vp/mn, with vz~108cm/s & n.~10%%/cm?.



Expected Sensitivities

Heavy mediator: Fp,, = 1 Light mediator: Fpy, « 1/q% with e = a,m,
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v' Werequired N,,.=3.6 under the negligible background assumption.
v The proposed GJJ DM detector can improve the minimum detectable DM mass (mpy~0.1 keV)
by more than 3 orders of magnitude over the ongoing/existing experiments.

v Even capable of probing sub-keV DM with great expected reaches.
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Mayly Sanchez - ANNIE and the Future of Hybrid Neutrino Detectors
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Karan Jani - A deci-Hz Gravitational-Wave Lunar Observatory for Cosmology

Ferah Munshi - Testing SIDM with Realistic Galaxy Formation Simulations

Ankur Agrawal - Superconducting Qubit Advantange for Dark Matter (SQUAD)

Caterina Doglioni - Initiative for Dark Matter in Europe and beyond




Summary

» We have proposed a class of new DM detectors, adopting the GJJ device which

has been implemented & demonstrated experimentally.

> For the scattering between DM moving in 3D space & e’s confined in 2D graphene,

we (for the first time) built an effective model and computed the event rate.

= Signal rate depends on the DM flow direction!

» The proposed detector is capable of sensing sub-keV (warm) DM scattering off
electrons due to its outstanding E;,~0.1 meV. = Improving the minimum

detectable DM mass (mpy~0.1 keV) by more than 3 orders of magnitude.

The Test Run with the Existing GJJ Device samples is in progress.




Future Plans

> We can use the same GJJ-based devices to detect ultra-light DM of m = (sub-meV — eV) via

DM absorption: e.g., axion/axion-like particle and dark gauge boson.

=» Theoretical calculation: work in progress now.

> Directional dependence of signals: the angle between the DM wind flow and the

graphene € using angle information for each event or rotating the detector.

> The proposed GJJ detector can be used as a sensor. = A sensor made of a few GJJ units

can be attached to the target material, e.g., superconductor, Superfluid He, or polar material.

> [Schedule] Multiple GJJs & test (E-beam litho.) = Fabrication w/ inch-scale graphene &

long-time measurement (photo-litho.) = Stacking of GJJ sheets & year-scale measurement

> We need more Collaborators & Research grant.

Thank you



