

Many thanks to A. Mazeliauskas, C. A. Salgado, H. Paukkunen, K. J. Eskola and C. Andrés for discussions

#### Current status of nPDFs and prospects for pO and OO collisions

Petja Paakkinen

IGFAE – Universidade de Santiago de Compostela

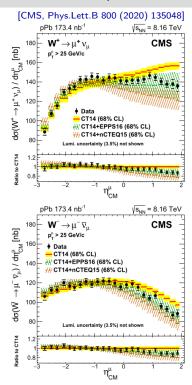
Opportunities of OO and pO collisions at the LHC 8 Feb 2021

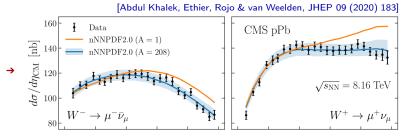






## Section 1


nPDF overview


# Latest nPDF global analyses

|                                 | EPPS16       | nNNPDF2.0    | nCTEQ15WZ    | nNNPDF1.0    | TuJu19          | KSASG20          |
|---------------------------------|--------------|--------------|--------------|--------------|-----------------|------------------|
| Order in $\alpha_s$             | NLO          | NLO          | NLO          | NNLO         | NNLO            | NNLO             |
| la NC DIS                       | ✓            | ✓            | <b>√</b>     | ✓            | <b>√</b>        | <b>√</b>         |
| uA CC DIS                       | ✓            | ✓            |              |              | ✓               | <b>√</b>         |
| pA DY                           | ✓            |              | ✓            |              |                 |                  |
| πA DY                           | ✓            |              |              |              |                 |                  |
| RHIC dAu/pp $\pi$               | ✓            |              | ✓            |              |                 |                  |
| LHC pPb W, Z                    | ✓            | ✓            | ✓            |              |                 |                  |
| LHC pPb jets                    | ✓            |              |              |              |                 |                  |
|                                 |              |              |              |              |                 |                  |
| ${\cal Q}$ cut in DIS           | 1.3 GeV      | 1.87 GeV     | 2 GeV        | 1.87 GeV     | 1.87 GeV        | 1.3 GeV          |
| Data points                     | 1811         | 1467         | 828          | 451          | 2336            | 4525             |
| Free parameters                 | 20           | 256          | 19           | 183          | 16              | 9                |
| Error analysis                  | Hessian      | Monte Carlo  | Hessian      | Monte Carlo  | Hessian         | Hessian          |
| Error tolerance $\Delta \chi^2$ | 52           | N/A          | 35           | N/A          | 50              | 10               |
| Free-proton PDFs                | CT14         | NNPDF3.1     | ∼CTEQ6M      | NNPDF3.1     | own fit         | CT18             |
| HQ treatment                    | GM-VFNS      | GM-VFNS      | GM-VFNS      | GM-VFNS      | GM-VFNS         | GM-VFNS          |
| Indep. flavours                 | 6            | 6            | 5            | 3            | 4               | 3                |
|                                 |              |              |              |              |                 |                  |
| Year                            | 2016         | 2020         | 2020         | 2019         | 2019            | 2020             |
| Reference                       | EPJC 77, 163 | JHEP 09, 183 | EPJC 80, 968 | EPJC 79, 471 | PRD 100, 096015 | arXiv:2010.00555 |

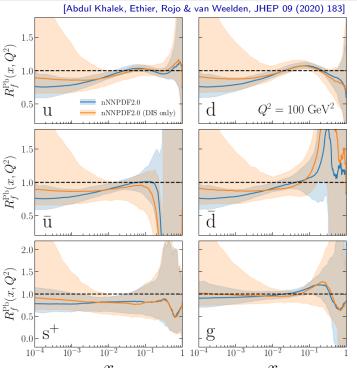
State of the art

## W bosons in pPb at 8.16 TeV





Potential probes of the flavour separation (and strangeness):


- $u\bar{d} (u\bar{s}, c\bar{s}) \to W^+$
- $\blacksquare d\bar{u} \ (s\bar{u}, s\bar{c}) \to W^-$

Remember: small-x, high- $Q^2$  quarks and gluons correlated by DGLAP evolution  $\rightarrow$  constraints for gluons

Increased statistics for W bosons in the 8.16 TeV data set

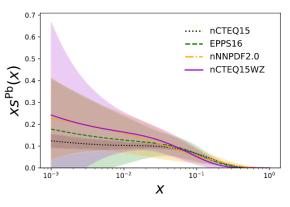
→ Included in nNNPDF2.0 and nCTEQ15WZ

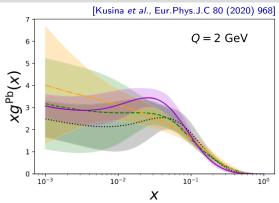
## W/Z bosons in pPb at 5.02 TeV and 8.16 TeV - impact in nNNPDF2.0



Flexible neural-network parametrization (256 free parameters)

Includes CMS and ATLAS W/Z data


Compared to DIS-only fit:


- $\begin{tabular}{ll} \blacksquare & {\sf Preference} & {\sf for} & {\sf EMC} & {\sf effect} & {\sf both} & {\sf in} \\ & u & {\sf and} & d \\ \end{tabular}$
- Enhanced shadowing for all quarks
- Some preference for gluon shadowing & antishadowing

Here:

$$R_f^A(x,Q^2) = \frac{Zf_f^{\mathbf{p}/A}(x,Q^2) + (A-Z)f_f^{\mathbf{n}/A}(x,Q^2)}{Zf_f^{\mathbf{p}}(x,Q^2) + (A-Z)f_f^{\mathbf{n}}(x,Q^2)}$$

## W/Z bosons in pPb at 5.02 TeV and 8.16 TeV – impact in nCTEQ15WZ





#### Includes also ALICE & LHCb W/Z data

→ Most extensive EW-boson data set to date

#### Compared to nCTEQ15:

- lacksquare Additional freedom for s needed to describe the data
  - much larger uncertainty
- Less gluon shadowing

|             |        |           | $\sqrt{s_{NN}}$ [TeV] |
|-------------|--------|-----------|-----------------------|
| Data overvi | ew     |           |                       |
| ATLAS       | Run I  | $W^{\pm}$ | 5.02                  |
| ATLAS       | Run I  | Z         | 5.02                  |
| CMS         | Run I  | $W^\pm$   | 5.02                  |
| CMS         | Run I  | Z         | 5.02                  |
| CMS         | Run II | $W^{\pm}$ | 8.16                  |
| ALICE       | Run I  | $W^\pm$   | 5.02                  |
| LHCb        | Run I  | Z         | 5.02                  |

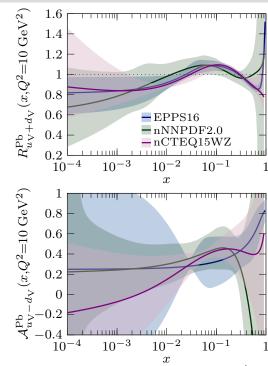
## u and d valence quark modifications (in lead)

Most nuclei are close to isoscalar

 $\rightarrow$  Nearly equal amout of u and d quarks

For example, we can write

$$\begin{split} f_{u_{\text{V}}}^{A} &= R_{u_{\text{V}}+d_{\text{V}}}^{A} \left(1 - \frac{A - 2Z}{A} \mathcal{A}_{u_{\text{V}}-d_{\text{V}}}^{A}\right) \frac{A}{2} (f_{u_{\text{V}}}^{p} + f_{d_{\text{V}}}^{p}) \\ f_{d_{\text{V}}}^{A} &= R_{u_{\text{V}}+d_{\text{V}}}^{A} \left(1 + \frac{A - 2Z}{A} \mathcal{A}_{u_{\text{V}}-d_{\text{V}}}^{A}\right) \frac{A}{2} (f_{u_{\text{V}}}^{p} + f_{d_{\text{V}}}^{p}) \end{split}$$


where

$$R_{u_{\rm V}+d_{\rm V}}^A = \frac{f_{u_{\rm V}}^{p/A} + f_{d_{\rm V}}^{p/A}}{f_{u_{\rm V}}^p + f_{d_{\rm V}}^p} \qquad \mathcal{A}_{u_{\rm V}-d_{\rm V}}^A = \frac{f_{u_{\rm V}}^{p/A} - f_{d_{\rm V}}^{p/A}}{f_{u_{\rm V}}^{p/A} + f_{d_{\rm V}}^{p/A}}$$

and neutron excess  $\frac{A-2Z}{A}\approx 0.2$  for Pb

→ Need high-precision data on non-isoscalar nuclei to constrain the asymmetry

Important for studying the physical origin of the EMC effect



#### u and d sea quark modifications (in lead)

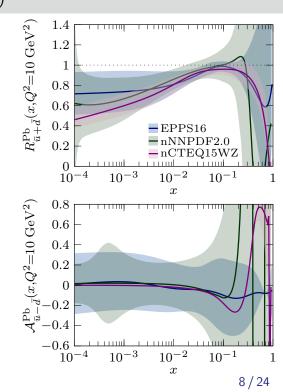
Most nuclei are close to isoscalar

 $\rightarrow$  Nearly equal amout of  $\bar{u}$  and  $\bar{d}$  quarks

Here

$$f_{\bar{u}}^{A} = R_{\bar{u}+\bar{d}}^{A} \left(1 - \frac{A - 2Z}{A} A_{\bar{u}-\bar{d}}^{A}\right) \frac{A}{2} (f_{\bar{u}}^{p} + f_{\bar{d}}^{p})$$

$$f_{\bar{d}}^{A} = R_{\bar{u}+\bar{d}}^{A} \left( 1 + \frac{A - 2Z}{A} \mathcal{A}_{\bar{u}-\bar{d}}^{A} \right) \frac{A}{2} (f_{\bar{u}}^{p} + f_{\bar{d}}^{p})$$


with

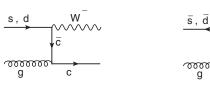
$$R_{\bar{u}+\bar{d}}^{A} = \frac{f_{\bar{u}}^{p/A} + f_{\bar{d}}^{p/A}}{f_{\bar{u}}^{p} + f_{\bar{d}}^{p}} \qquad \mathcal{A}_{\bar{u}-\bar{d}}^{A} = \frac{f_{\bar{u}}^{p/A} - f_{\bar{d}}^{p/A}}{f_{\bar{u}}^{p/A} + f_{\bar{d}}^{p/A}}$$

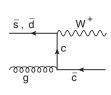
Flavour asymmetry only a small correction

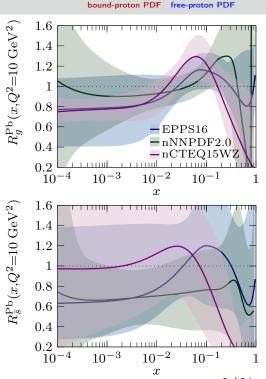
nNNPDF2.0 does not use fixed-target DY data

→ less constraints for valence/sea separation compared to EPPS16 & nCTEQ15WZ



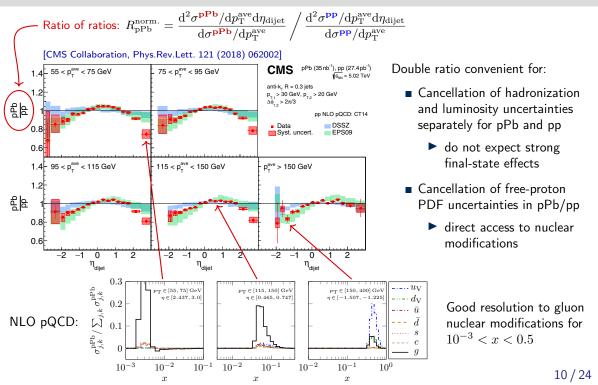

## Gluon and strange modifications (in lead)


The gluon and strange modifications are poorly constrained in the current nPDF releases

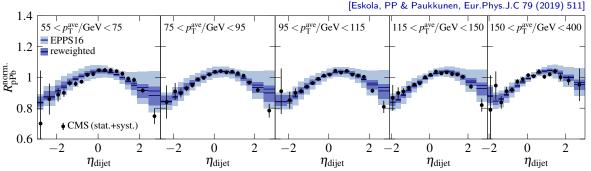

 Better gluon constraints are available from LHC pPb dijets and D-mesons, but these need to be included in the global analyses (in progress)

The existing LHC pPb  $\mbox{W/Z}$  data did not give strong constraints for the strangeness

- → Additional data needed
- W+charm measured in pp, doable in pPb?





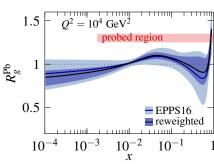




 $R_i^A(x,Q^2) = f_i^{P/A}(x,Q^2) / f_i^P(x,Q^2)$ 

## Better gluon constraints: Dijets in pPb at 5.02 TeV

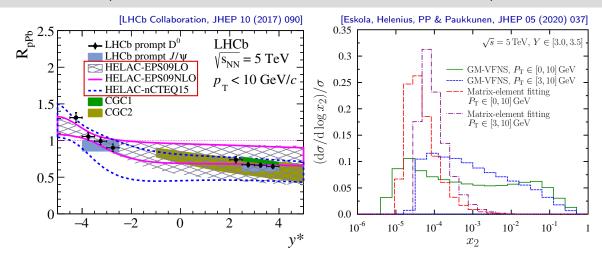


## Dijets in pPb at 5.02 TeV - EPPS16 reweighted




A Hessian PDF reweighting study shows that these data can put stringent constraints on the gluon modifications

- Drastic reduction in EPPS16 gluon uncertainties
- $\blacksquare$  Support for mid- $\!x$  antishadowing and small- $\!x$  shadowing
- Probes the onset of shadowing down to  $x > 10^{-3}$


Remaining questions:

- Is there EMC suppression for gluons?
- What happens at  $x < 10^{-3}$ ?



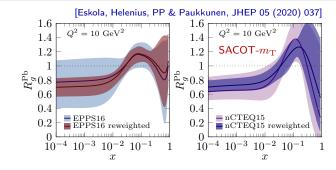
$$R_i^A(x,Q^2) = f_i^{\mathrm{p}/A} \ \left(x,Q^2\right) \ / \ f_i^{\mathrm{p}} \ \left(x,Q^2\right) \\ \text{bound-proton PDF} \ \ \text{free-proton PDF}$$

#### D-mesons in pPb at 5.02 TeV - differences in theoretical descriptions

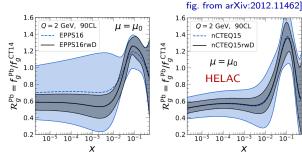


Data can probe nPDFs down to  $x\sim 10^{-5}$ , but x sensitivity differs between theoretical approaches:

- The HELAC framework [Lansberg & Shao, EPJ C77 (2017) 1] uses a matrix-element fitting method with  $2 \rightarrow 2$  kinematics producing a narrow distribution in x (can be used also for quarkonia)
- The SACOT- $m_{\rm T}$  scheme [Helenius & Paukkunen, JHEP 1805 (2018) 196] of GM-VFNS NLO pQCD gives a much wider x-distribution due to taking into account the gluon-to-HQ fragmentation


#### D-mesons in pPb at 5.02 TeV - nPDFs reweighted

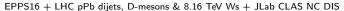
#### $R_{\mathrm{pPb}}$ mostly insensitive to the differences

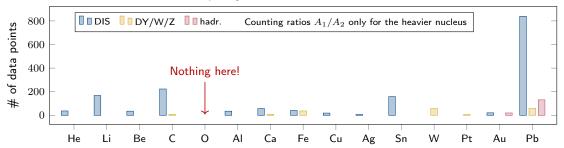

- ightharpoonup Reweighting with the two methods give compatible results for  $R_g^{\mathrm{Pb}}$  see the refs. for comparison with POWHEG+PYTHIA, FONLL
- $\blacksquare$  Large reduction in small-x uncertainties, probed down to  $x\sim 10^{-5}$
- EPPS16 and nCTEQ15 brought to a closer mutual agreement

#### Striking similarity with the results with dijets

→ Supports the validity of collinear factorization in pPb and the universality of nPDFs




[Kusina, Lansberg, Schienbein & Shao, PRL 121 (2018) 052004,

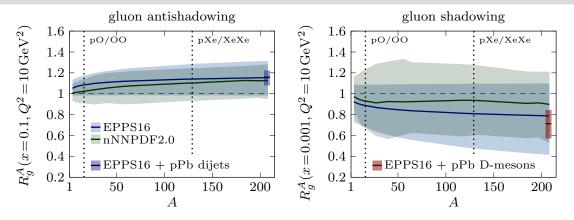



#### Section 2

# Opportunities with lighter ions

#### Data availability w.r.t. A






- $\sim 50\%$  of the data points are for Pb!
  - $\odot$  Good coverage of DIS measurements for different A
  - $\stackrel{ ext{(a)}}{ ext{(b)}}$  DY data more scarce, but OK A coverage
  - (3) Hadronic observables available only for heavy nuclei!

#### Light-ion runs at LHC could:

- Complement other light-nuclei DY data with W and Z production (strangeness!)
- Give first direct constraints (e.g. dijets, D-mesons) on light-nuclei gluon distributions!

## A-dependence of gluon modifications



Direct gluon constraints available only for heavy nuclei (most constraining: pPb dijets & D-mesons)

- → Gluons and small-x quarks poorly constrained for lighter nuclei
- → Significant parametrization dependence

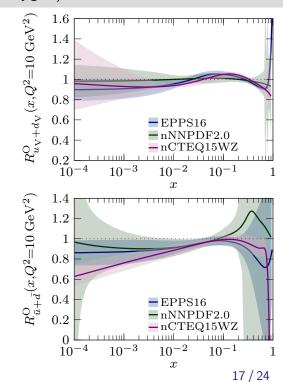
How confidently can we interpolate the light-nuclei gluons from measurements at large A?

- lacktriangle SMOG@LHCb can help for the large x
- → Need for lighter-ion pA runs!

## Average u and d quark modifications (in oxygen)

The average  $\boldsymbol{u}$  and  $\boldsymbol{d}$  valence and sea modifications

$$R_{u_{\rm V}+d_{\rm V}}^A = \frac{f_{u_{\rm V}}^{p/A} + f_{d_{\rm V}}^{p/A}}{f_{u_{\rm V}}^p + f_{d_{\rm V}}^p} \qquad R_{\bar{u}+\bar{d}}^A = \frac{f_{\bar{u}}^{p/A} + f_{\bar{d}}^{p/A}}{f_{\bar{u}}^p + f_{\bar{d}}^p}$$


are under control (from interpolation)

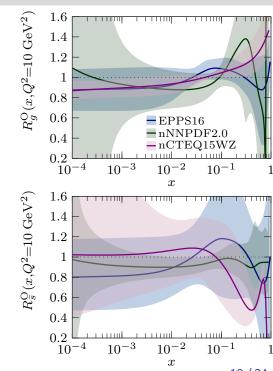
Oxygen fully isoscalar

- → No contribution from flavour asymmetry!
- From nPDF point of view, oxygen is "simpler" than lead

nNNPDF2.0 differs (again) from EPPS16 and nCTEQ15WZ due to not having fixed-target DY data

Data from E772 indicate that there should be antishadowing for valence, but not for sea quarks




# Gluon and strange modifications (in oxygen)

No agreement for the shape of gluon modifications!

- $\rightarrow$  Can cause significant uncertainties e.g. for jet  $R_{\rm OO}$
- ! No direct data constraints available
- → We could expect major improvement from a LHC pO run

Large uncertainties also for the strange quark

- nNNPDF2.0 has smaller uncertainties here likely due to including NuTeV  $\nu$ Fe CC DIS data (interpolation, again)
- Measuring EW bosons in pO/OO might be able to test these



 $R_i^A(x,Q^2) = f_i^{p/A}(x,Q^2) / f_i^p(x,Q^2)$ 

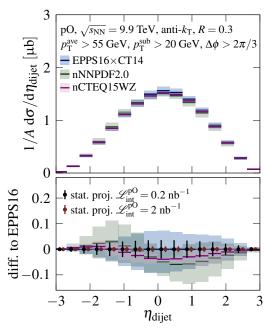
bound-proton PDF free-proton

## A case study: Dijet production in pO at 9.9 TeV

Similar setup as in the CMS 5.02 TeV pPb measurement

Total integrated pO cross section of  $\sim 80~\mu b$ 

- $\blacksquare$  Grows with larger  $\sqrt{s_{\rm NN}},$  decreases with smaller A
- $\blacksquare$  Compare with  $\sim 330~\mu b$  in pPb at 5.02 TeV
- Sufficient to give reasonable statistics even at relatively low luminosities


Here only single-differential

 $\blacksquare$  Going multi-differential would improve locality in x and  $Q^2$  (requires more luminosity)

**Question:** Systematic uncertainties?

N.B. For each nPDF, I am using the corresponding baseline free-proton PDF  $\,$ 

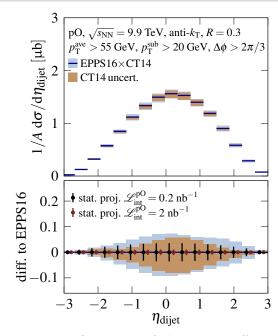
→ Calculations with nCTEQ15WZ do not include free-proton PDF uncertainties



\*not corrected for hadronization effects \*not corrected for efficiency

#### Dijet production in pO at 9.9 TeV - free-proton uncertainties

**Problem:** absolute cross sections very sensitive to the used free-proton PDFs


Difficult to disentangle nuclear modifications from the free-proton d.o.f.s

N.B. In the EPPS framework, free-proton uncertainties enter both from the

- incoming proton PDFs:  $f_i^p$
- lacksquare incoming bound-nucleon PDFs:  $f_i^{p/A}=R_i^Af_i^p$

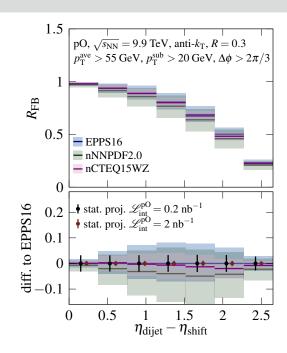
Possible ways to mitigate the problem:

- lacktriangle Take forward-to-backward ratio  $(R_{
  m FB})$
- Take nuclear modification ratio  $(R_{\mathrm{pPb}}^{(\mathrm{norm.})})$ 
  - requires a pp reference measurement at the same collision energy



\*not corrected for hadronization effects \*not corrected for efficiency

#### Dijet $R_{\rm FB}$ in pO at 9.9 TeV


Excellent cancellation of free-proton PDFs

Luminosity (and hadronization) uncertainties also (expected to) cancel!

Already  $\sim 1~{\rm nb}^{-1}$  can be expected to be enough to put new constraints on nPDFs

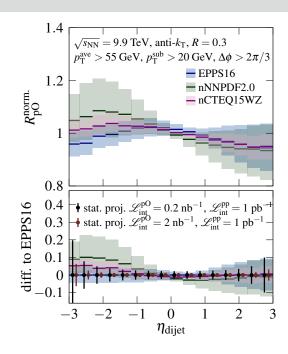
**Problem:** access only to nPDF small v.s. large  $\boldsymbol{x}$  correlations – mixing different effects

- Forward shadowing and backward antishadowing pull to the same direction
- $\blacksquare$  Even rather different nuclear modifications can yield similar shape for  $R_{\rm FB}$



# Dijet $R_{ m pO}^{ m norm.}$ in pO at 9.9 TeV

Excellent cancellation of free-proton PDFs


→ Direct access to nuclear modifications

Luminosity (and hadronization) uncertainties also (expected to) cancel!

Already  $\sim 1~{\rm nb}^{-1}$  can be expected to be enough to put new constraints on nPDFs (if we have sufficient statistics for the pp reference)

- → Can resolve different nPDF parametrisations!
- → We would heavily benefit from having the pp reference!

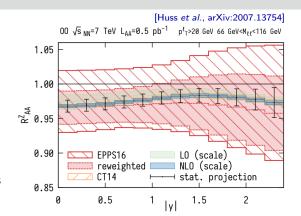
The expected  $2 \text{ nb}^{-1}$  for LHCb should be enough to give small-x gluon constraints also from forward D-meson production!



## EW bosons in pO and OO?

EW probes are more luminosity hungry

- We would need  $\sim 2~{\rm pb}^{-1}$  for pO to get the same statistics as in the 8.16 TeV pPb run
- Larger cross section in OO → less luminosity needed
  - Accurate determination of the luminosity uncertainty important


Large part of the uncertainties in these observables come from the poorly known gluons

■ These we can constrain already with the hadronic observables in pO

(EW bosons still an important check

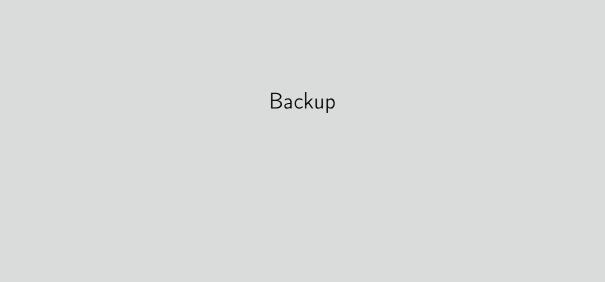
for factorization / nPDF universality) Since u/d flavour asymmetry does not contribute (isoscalarity), measuring W/Z bosons in pO/OO could provide unique constraints for strangeness nuclear modifications

→ Requires a further study



#### Summary

#### Where are we now with the nPDF global analyses?


- We have good understanding of the average valence and sea quark nuclear modifications, but flavour separation remains difficult to constrain
- Strong evidence from LHC (both hadronic & EW probes) for gluon shadowing & antishadowing
  - ▶ Lot of activity by different groups to include LHC data in their analyses

#### What can we learn from lighter-ion runs at the LHC?

- lacktriangle Already few  $\mathrm{nb}^{-1}$  in pO could help us better understand gluon modifications in light nuclei
  - ▶ Important for setting the baseline for energy-loss studies in OO!
- $\blacksquare$  W/Z production in pO/OO could serve as a test-bench for nuclear strangeness

#### Points for discussion:

- Can we expect a pp reference at the same energy as the pO run?
  - ▶ If we are expecting higher luminosity pPb and pp runs at 8.8 or 8.0 TeV, should we "tune" the pO run to that?
  - ▶ Does this impact the plans for "tuning" the OO collision energy?



#### What the nPDFs are?

Based on the collinear factorization of QCD:

$$\mathrm{d}\sigma^{AB\to k+X} \stackrel{Q\gg\Lambda_{\mathrm{QCD}}}{=} \sum_{i,j,X'} \frac{f_i^A(Q^2) \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X'}(Q^2) \otimes f_j^B(Q^2) + \mathcal{O}(1/Q^2)$$

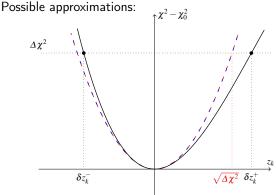
The coefficient functions  ${\rm d}\hat{\sigma}^{ij\to k+X'}$  are calculable from perturbative QCD. . .

PDFs are *universal*, process independent, and obey the DGLAP equations

$$Q^2 \frac{\partial f_i^A}{\partial Q^2} = \sum_j P_{ij} \otimes f_j^A$$

... but the parton distribution functions  $f_i^A, f_j^B$  contain long-range physics and cannot be obtained by perturbative means

For a nucleus A, one can decompose


bound-proton PDF bound-neutron PDF 
$$f_i^A(x,Q^2) = Z f_i^{\mathrm{p}/A}(x,Q^2) + (A-Z) \, f_i^{\mathrm{n}/A} \, (x,Q^2),$$
 and assume  $f_i^{\mathrm{p}/A} \overset{\mathrm{isospin}}{\longleftrightarrow} f_i^{\mathrm{n}/A}$ 

How do we get the  $f_i^{P/A}$ ?

- Physical models: too numerous to cite here 'Everybody's Model is Cool'
- Extract from lattice: not an easy task
- lacktriangle Fit to data: parametrize the x- and A-dependence the global analysis approach

The Hessian reweighting is a method to study the impact of a new set of data on the PDFs without performing a full global fit

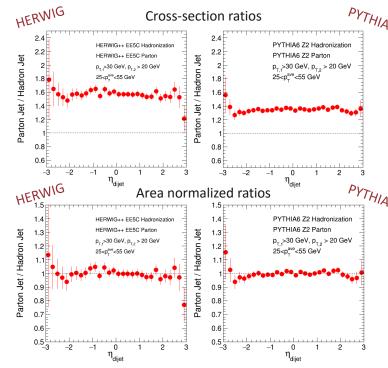
$$\chi^2_{\mathsf{new}}(\mathbf{z}) = \chi^2_{\mathsf{old}}(\mathbf{z}) + \sum_{ij} \left(y_i(\mathbf{z}) - y_i^{\mathsf{data}}\right) C_{ij}^{-1} \left(y_j(\mathbf{z}) - y_j^{\mathsf{data}}\right)$$



quadratic–linear:  $\chi^2_{\rm old} pprox \chi^2_0 + \sum_k z_k^2,$ 

quadratic–quadratic:  $\chi^2_{\mathrm{old}} pprox \chi^2_0 + \sum_k z_k^2$ ,

cubic–quadratic:  $\chi^2_{\text{old}} \approx \chi^2_0 + \sum_k (a_k z_k^2 + b_k z_k^3), \qquad y_i \approx y_i [S_0] + \sum_k (d_{ik} z_k + e_{ik} z_k^2)$ 

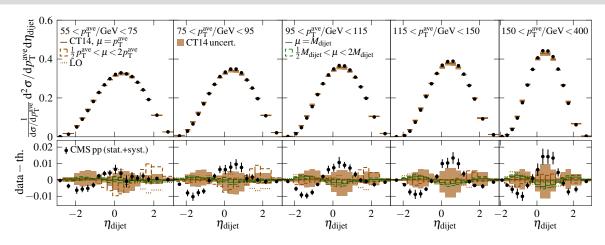

$$\begin{array}{c} y_i[S_k^+] - y_i[S_k^-] \\ y_i[S_k^+] - y_i[S_0] \end{array}$$

$$\delta_{z_k^-}$$

$$y_i[S_k^-] - y_i[S_0]$$

$$y_i[S_k^-] - y_i[S_0]$$

$$y_i pprox y_i[S_0] + \sum_k d_{ik} z_k$$
  $y_i pprox y_i[S_0] + \sum_k (d_{ik} z_k + e_{ik} z_k^2)$   $y_i pprox y_i[S_0] + \sum_k (d_{ik} z_k + e_{ik} z_k^2)$ 

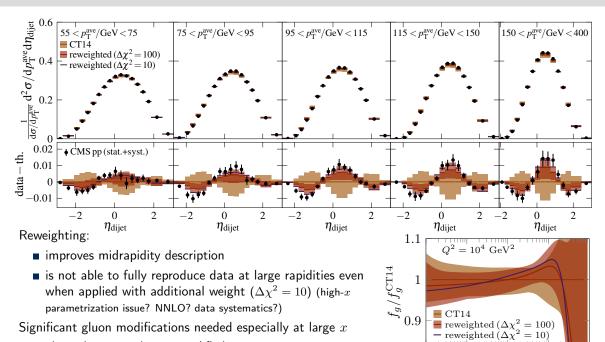



# Hadronization uncertainty

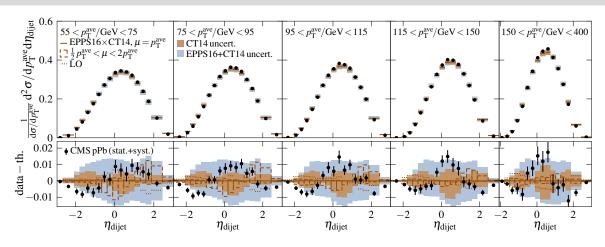
Parton jets have higher cross section for R = 0.3 jets with same kinematic selections compared to hadron jets

Parton jets are harder fragmenting

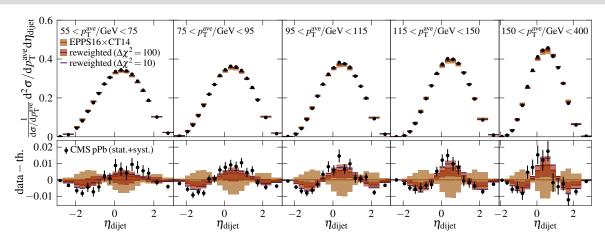
After self normalization effect of hadronization is negligible




- Predicted NLO distributions somewhat wider than the measured spectra
- lacktriangle High- $p_{
  m T}^{
  m ave}$  midrapidity robust against scale variations and LO-to-NLO effects
  - → can expect NNLO corrections to be small in this region
  - → observed discrepancy seems to be a PDF related issue
- Refitting might be needed to improve agreement with data
  - → study the impact with the reweighting method


 $10^{-3}$ 

 $10^{-4}$ 


 $10^{-1}$ 



also valence quarks get modified



- pPb data deviates from NLO calculations almost the same way as the pp data
  - → had we not seen the same deviations in pp, we might have interpreted this as a fault in our nuclear PDFs
- Compared to pp case we have additional suppression in data compared to theory at forward rapidities
  - → implication of deeper gluon shadowing

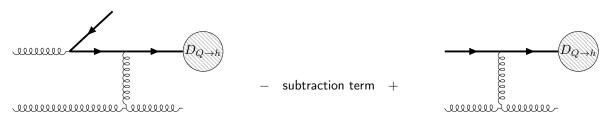


- Modifications needed in CT14 to describe pp data have large impact on pPb predictions
  - → it is imperative to understand the pp baseline before making far-reaching conclusions from pPb data
- Using these data directly in nuclear PDF analysis with CT14 proton PDFs would lead to
  - overestimating nuclear effects
  - ► large scale-choice bias

→ Consider nuclear modification factor instead

#### Heavy-flavour production mass schemes

#### **FFNS**

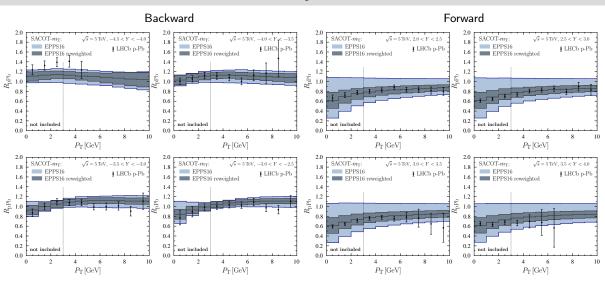

In fixed flavour number scheme, valid at small  $p_{\rm T}$ , heavy quarks are produced only at the matrix element level

Contains  $\log(p_{\mathrm{T}}/m)$  and  $m/p_{\mathrm{T}}$  terms

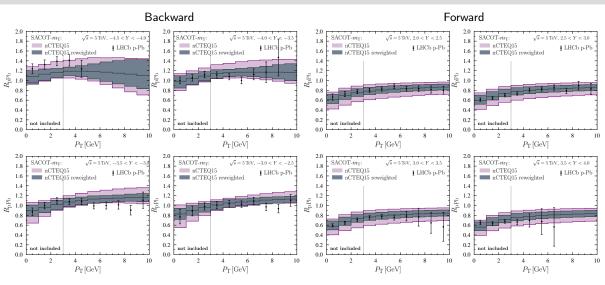
#### **ZM-VFNS**

In zero-mass variable flavour number scheme, valid at large  $p_{\rm T}$ , heavy quarks are treated as massless particles produced also in ISR/FSR

Resums  $\log(p_{\mathrm{T}}/m)$  but ignores  $m/p_{\mathrm{T}}$  terms

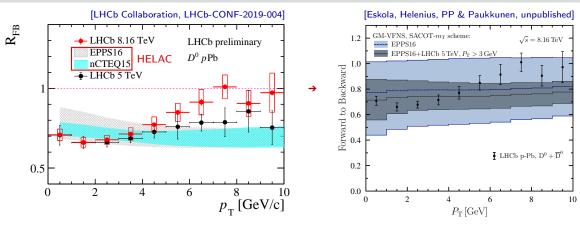



#### **GM-VFNS**


A general-mass variable flavour number scheme combines the two by supplementing subtraction terms to prevent double counting of the resummed splittings, valid at all  $p_{\rm T}$ 

Resums  $\log(p_{\mathrm{T}}/m)$  and includes  $m/p_{\mathrm{T}}$  terms in the FFNS matrix elements

Important: includes also gluon-to-HF fragmentation – large contribution to the cross section!




- Data well reproduced with the reweighted results
- Significant reduction in EPPS16 uncertainties especially in forward bins
- Good agreement with data below cut no physics beyond collinear factorization needed



- $lue{}$  Uncertainties smaller to begin with in the forward direction (less flexible small-x parametrization) while larger in backward almost identical results
- Data well reproduced

D-mesons at 8.16 TeV – do we have tension?



QM2019 LHCb summary talk:

"Tension between data and nPDFs predictions. Additional effects required."

ightarrow Theoretical description matters, HELAC predicts much smaller nPDF uncertainties for  $R_{
m FB}$  than SACOT- $m_{
m T}$ !

The slope of the 8.16 TeV data still differs from that in nPDF predictions and in 5.02 TeV data

→ How can we explain the difference?