A Pythia/Angantyr perspective on 00 and pO collisions

Christian Bierlich, bierlich@thep.lu.se Lund University
Feb 10th 2021, Opportunities of OO and pO collisions, CERN

General purpose event generators for pp

(Figure: Peter Skands)

- Traditional focus on hard processes (+ jets), QCD resummation by parton showers, MPIs a sideshow, hadronization a necessity.
- Jet universality! QGP production assumed a heavy ion phenomenon.

Small system collectivity a game changer

(CMS: JHEP 09 (2010) 091)

- QGP the only game in town?

1. Don't add QGP production: No more soft QCD physics!
2. Add QGP production: Goodbye jet universality!

- Solution: Change the game.

(ALICE: Nat. Phys. 13 (2017))

This talk

- MPIs and The Lund string model for hadronization.
- Generalization to heavy ions: The Angantyr model.
- Angantyr for oxygen collisions.
- Generating flow: string shoving.
- String shoving in oxygen collisions.
- Early-time hadronic rescattering.
- Hadronic rescattering in oxygen collisions.
- Looking ahead: cosmic cascades with Pythia.

This talk

- MPIs and The Lund string model for hadronization.
- Generalization to heavy ions: The Angantyr model.
- Angantyr for oxygen collisions.
- Generating flow: string shoving.
- String shoving in oxygen collisions.
- Early-time hadronic rescattering.
- Hadronic rescattering in oxygen collisions.
- Looking ahead: cosmic cascades with Pythia.
- OO Pythia perspective I: "untuned" test of models in new geometries
- OO Pythia perspective II: stepping stone for cosmic cascades
- Note: My biased view. Presentation of ongoing work.

MPIs in PYTHIA8 pp (sfostrand and Skands: arxivithep-ph/0402078)

- Several partons taken from the PDF.
- Hard subcollisions with $2 \rightarrow 2$ ME:

Figure T. Sjöstrand

$$
\frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}\right)}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)}{\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)^{2}} .
$$

- Momentum conservation and PDF scaling.
- Ordered emissions: $p_{\perp 1}>p_{\perp 2}>p_{\perp 4}>\ldots$ from:

$$
\mathcal{P}\left(p_{\perp}=p_{\perp i}\right)=\frac{1}{\sigma_{n d}} \frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}} \exp \left[-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{1}{\sigma_{n d}} \frac{d \sigma}{d p_{\perp}^{\prime}} d p_{\perp}^{\prime}\right]
$$

- $p_{\perp, 0} \rightarrow$ retuned for RHIC energies. High energy OO better.

Angantyr - the Pythia heavy ion model

- Pythia MPI model extended to heavy ions since v. 8.235.

1. Glauber initial state with Gribov colour fluctuations.
2. Attention to diffractive excitation \& forward production.
3. Hadronize with Lund strings.

How to use?

- Not so fond of "providing predictions".
- We provide the code, experiments generate their own.
- Reproduction of experimental conditions crucial.
- Blind implementation of analyses good practise.
- We prefer validating with

```
File Edit Tools Syntax Buffers Window Help
#nclude
#include "Pythia8/Heavyions.h"
using namespace Pythias;
// This is a one-slide example program demonstrating Heavy Ion
// functionality.
int main() {
    Pythia pythia;
    // setup the beams
    pythia.readstring("Beams:idA = 1000822080");
    pythia,readString("Beams:idB = 1000822080"); // The lead ion.
    pythia.readString("Beams:eCM = 2760.0");
    // Sum up the weights of all generated events.
    double sumw = 0.0;
    // Count the number of charged particles.
    double ncEvent = 0.0;
    // Initialise Pythia
    pythia.init();
    for ( int iEvent = 0; iEvent < 1000; ++iEvent ) {
        if ( !pythia.next() ) continue;
        double nc = 0.0;
        for (int i = 0; i < pythia.event.size(); ++i) {
        Particle & p = pythia.event[i];
            if (p.isCharged() && p.pT()>0.1 && abs(p.eta()) < 0.5) ++nc;
        |
        sumw += pythia.info.weight();
        ncEvent t= nc * pythia.info.weight();
    cout << "Charged multiplicity density at mid-eta: " << ncEvent / sumw << endl;
    return 0;
}

\section*{Nucleus geometry}
- Fairly standard Woods-Saxon à la GLISSANDO.
- Easy to plug new geometries yourself (HeavyIonUserHooks).
- Upcoming: Harmonic Oscilator Shell, \(\alpha\)-clustering and Hulthén.
- Current release only WS, HOS test in this presentation:
\[
\begin{gathered}
\rho(r)=\frac{4}{\pi^{3 / 2} C^{3}}\left(1+\frac{(A-4) r^{2}}{6 C^{2}}\right) \exp \left(-r^{2} / C^{2}\right) \\
C^{2}=\left(\frac{5}{2}-\frac{4}{A}\right)^{-1}\left(\left\langle r^{2}\right\rangle_{A}-\left\langle r^{2}\right\rangle_{P}\right)
\end{gathered}
\]

\section*{Cross section colour fluctuations}
- NN cross section fluctuates event by event: important for \(\mathrm{p} A\), \(\gamma^{*} A\) and less \(A A\).
- Projectile remains frozen through the passage of the nucleus.
- Consider fixed state ( \(k\) ) projectile scattered on single target nucleon:
\[
\begin{gathered}
\Gamma_{k}(\vec{b})=\left\langle\psi_{s} \mid \psi_{I}\right\rangle=\left\langle\psi_{k}, \psi_{t}\right| \hat{T}(\vec{b})\left|\psi_{k}, \psi_{t}\right\rangle= \\
\left(c_{k}\right)^{2} \sum_{t}\left|c_{t}\right|^{2} T_{t k}(\vec{b})\left\langle\psi_{k}, \psi_{t} \mid \psi_{k}, \psi_{t}\right\rangle= \\
\left(c_{k}\right)^{2} \sum_{t}\left|c_{t}\right|^{2} T_{t k}(\vec{b}) \equiv\left\langle T_{t k}(\vec{b})\right\rangle_{t}
\end{gathered}
\]
- And the relevant amplitude becomes \(\left\langle T_{t_{i}, k}^{\left(n N_{i}\right)}\left(\vec{b}_{n i}\right)\right\rangle_{t}\)

\section*{Fluctuating nucleon-nucleon cross sections}
- Let nucleons collide with total cross section \(2\langle T\rangle_{p, t}\)
- Inserting frozen projectile recovers total cross section.
- Consider instead inelastic collisions only (color exchange, particle production):
\[
\frac{\mathrm{d} \sigma_{\mathrm{inel}, \mathrm{pp}}}{\mathrm{~d}^{2} \vec{b}}=2\langle T(\vec{b})\rangle_{p, t}-\langle T(\vec{b})\rangle_{p, t}^{2}
\]
- Frozen projectile will not recover original expression, but require target average first.
\[
\frac{\mathrm{d} \sigma_{w}}{\mathrm{~d}^{2} \vec{b}}=2\left\langle T_{k}(\vec{b})\right\rangle_{p}-\left\langle T_{k}^{2}(\vec{b})\right\rangle_{p}=2\langle T(\vec{b})\rangle_{t, p}-\left\langle\langle T(\vec{b})\rangle_{t}^{2}\right\rangle_{p}
\]
- Increases fluctuations! But pp can be parametrized.

\section*{Status and prospects}
- Fluctuating cross section event-by-event.
- Dynamically generated or parametrized.

- OO size and \(\alpha\) clusters: possible discovery venue?

\section*{Particle production: Wounded nucleons}
- Simple model by Białas, Bleszyński and Czyż,
- Wounded nucleons contribute equally to multiplicity in \(\eta\).
- Originally: Emission function \(F(\eta)\) fitted to data.

\(\frac{d N}{d \eta}=F(\eta)\)
(single wounded nucleon
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \(\sqrt{s}\), can be retuned down to 10 GeV .

\section*{Particle production: Wounded nucleons}
- Simple model by Białas, Bleszyński and Czyż,
- Wounded nucleons contribute equally to multiplicity in \(\eta\).
- Originally: Emission function \(F(\eta)\) fitted to data.

\(\frac{d N}{d \eta}=F(\eta)+F(-\eta)\)
(pp)
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \(\sqrt{s}\), can be retuned down to 10 GeV .

\section*{Particle production: Wounded nucleons}
- Simple model by Białas, Bleszyński and Czyż,
- Wounded nucleons contribute equally to multiplicity in \(\eta\).
- Originally: Emission function \(F(\eta)\) fitted to data.

\(\frac{d N}{d \eta}=w_{t} F(\eta)+\quad F(-\eta)\)
( pA )
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \(\sqrt{s}\), can be retuned down to 10 GeV .

\section*{Particle production: Wounded nucleons}
- Simple model by Białas, Bleszyński and Czyż,
- Wounded nucleons contribute equally to multiplicity in \(\eta\).
- Originally: Emission function \(F(\eta)\) fitted to data.

\(\frac{d N}{d \eta}=w_{t} F(\eta)+w_{p} F(-\eta)\)
- Angantyr: No fitting to HI data, but include model for emission function.
- Model fitted to reproduce pp case, high \(\sqrt{s}\), can be retuned down to 10 GeV .

\section*{Basic quantities in PbPb}
- Reduces to normal Pythia in pp. In AA:
1. Good reproduction of centrality measure.
2. Particle density at mid-rapidity.


\section*{Uptick in XeXe}
- Good description of XeXe uptick.
- OO runs out of participants quicker.
- Accurate comparison/projection ( \(N_{\text {part }}\) definition) crucial!
- Sensitivity to geometry to be explored.

(ALICE: PLB 790 (2019) 35)

\section*{Predictions for \(\mathbf{O O}\)}
- Mock centrality measure: \(N_{c h}\) in \(4<|\eta|<5\).
- Tuning effort necessary (in pipeline), results using GLISSANDO default parameter.
- \(\sqrt{s_{N N}}=5020 \mathrm{GeV}, \tau_{0 \max }=10 \mathrm{~mm} / \mathrm{c}, \approx 3 \mathrm{~K}\) events/minute/thread.


- Dedicated study of \(\alpha\) clustering warranted!

\section*{Geometry control}
- Projected difference between IS geometries at level of model precision.
- Measured vs. initial centrality has large impact (like pA).



\section*{Basic quantities in pPb}
- Centrality measures are delicate, but well reproduced.
- So is charged multiplicity.



\section*{Predictions for pO}
- Same story, increased effect.
- Note again: tuning to 1 and 2-nucleon densities necessary.



\section*{How to add space-time dependence to Lund strings?}
- Shopping list:
1. Space time structure (KISS for now, convolution of 2D Gaussians, Lorentz contracted in z-direction).
2. This talk: Flow effects with string shoving.
3. (Proper extension of rope hadronization to AA in pipeline, no results yet).


\section*{Shoving: The cartoon picture (ce, Gustafon, Lommbad: 1710.09725, t=Cinakraborys}

\subsection*{2010.07595)}
- Strings push each other in transverse space.
- Colour-electric fields \(\rightarrow\) classical force.

4. Transverse-space geometry.
ab Particle production mechanism.
?? String radius and shoving force

\section*{MIT bag model, dual superconductor or lattice?}
- Easier analytic approaches, eg. bag model:
\(\kappa=\pi R^{2}\left[\left(\Phi / \pi R^{2}\right)^{2} / 2+B\right]\)
- Bad \(R 1.7\) and dual sc. 0.95 respectively, shape of field is input.
- Lattice can provide shape, but uncertain \(R\).

- Solution: Keep shape fixed, but \(R\) ballpark-free.

\section*{The shoving force}
- Energy in field, in condensate and in magnetic flux.
- Let \(g\) determine fraction in field, and normalization \(N\) is given:
\[
E=N \exp \left(-\rho^{2} / 2 R^{2}\right)
\]
- Interaction energy calculated for transverse separation \(d_{\perp}\), giving a force:
\[
f\left(d_{\perp}\right)=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}}{4 R^{2}}\right)
\]
- Possibility for OO: \(R / R_{\mathrm{O}} \approx 1 / 5\) and \(R / R_{\mathrm{Pb}} \approx 1 / 14\)

\section*{Shoving results}
- The pp ridge (and much more, see 2010.07595).
- Here compared to ALICE: apply cuts and biases as you wish (even \(Z\) tags, see 1901.07447)

(ALICE: 2101.03110)

\section*{Recent progress: shoving in AA}
- Adding small pushes propagating along the string is difficult!
- Current problem: "secondary" string pieces arising from origami regions.
- If only there were no soft gluons around...


\section*{Shoving results PbPb and 00}
- Missing origami regions, realistic initial states (left).
- Toy model configuration (right)
- Both lacking hadronic rescattering, which also plays a role.



\section*{Early time hadronic rescattering}
- Hadronic rescattering framework recently in Pythia.
- Besides physics: Fast re-initialization of of low-energy collisions. Useful for cosmic shower programs.
- In place for pp (sjä strand and Utheim: 2005.05658), AA work in progress.
- Running time: \(t_{\text {res }} / t_{\text {def }}: \mathrm{pp}: 1.8, \mathrm{pPb}: 4.0, \mathrm{PbPb}: 250\).
- Full event history (where was the particle produced).
- Includes charm processes, extension option (pentaquarks, deuterons, ...) work in progress.

\section*{String kinematics}
- Lund string connects \(q \bar{q}\), tension \(\kappa=1 \mathrm{GeV} / \mathrm{fm}\).
- String obey yo-yo motion:
\[
p_{q_{0} / \bar{q}_{0}=\left(\frac{E_{c m}}{2}-\kappa t\right)(1 ; 0,0, \pm 1)}
\]
- String breaks to hadrons with 4-momenta:
\[
p_{h}=x_{h}^{+} p^{+}+x_{h}^{-} p^{-} \text {with } p^{ \pm}=p_{q_{0} / \bar{q}_{0}}(t=0)
\]

- ... which gives breakup vertices in momentum picture.

\section*{Hadron vertex positions (Ferresesole \& sistrant: 1800.a66i)}
- Translate to space-time breakup vertices through string EOM.
\[
v_{i}=\frac{\hat{x}_{i}^{+} p^{+}+\hat{x}_{i}^{-} p^{-}}{\kappa}
\]
- Hadron located between vertices: \(v_{i}^{h}=\frac{v_{i}+v_{i+1}}{2}\left( \pm \frac{p_{h}}{2 \kappa}\right)\)

- Formalism also handles complex topologies.

\section*{Why "early time"?}
- Particle production time pp (upper left) pPb (upper right) and PbPb (bottom).
- Freezeout time is not an instant! \(\tau^{2}=\tau_{L}^{2}=t^{2}-z^{2}\).


\section*{Some results (light flavour)}
- Some light flavour ( \(\pi\) and \(\Lambda\) ) yields.
- Take home: Smaller system, smaller effect: from \(30 \%\) to \(15 \%\).
- Isolating pre-hadronization effects (also on flow, \(R_{A A}, \ldots\) )?
- Note: untuned - rescattering gives higher total multiplicity.
- \(\Rightarrow\) might not be so dramatic as shown.



\section*{Some results (heavy flavour)}
- Pythia rescattering includes heavy flavours.
- Sizeable effect on \(J / \psi\) : source of \(R_{A A}\) ? Need distinct geometries at high energies to test! ( \(=00\) run).
- Note: Only perturbative charm in Pythia.



\section*{Outlook: cosmic cascades}
- Important aspect, way out of my comfort zone.
- Neutrino flux very dependent on hadronic cascade, MC used.
- Pythia not a direct contender yet, but used indirectly.
- Wish list: Intermediate geometries (pO!), N fragmentation region (see LHCf talks), strange projectiles (one can dream...).




\section*{Summary}
- Angantyr project: Pythia for heavy ion physics.
- Strong points:
1. Multiplicity.
2. Cross sections and forward production.
3. Large open source infrastructure.

\section*{Summary}
- Angantyr project: Pythia for heavy ion physics.
- Strong points:
1. Multiplicity.
2. Cross sections and forward production.
3. Large open source infrastructure.
4. (not covered) Trigger process specification, UPCs, parton shower variations, external matrix elements, ...

\section*{Summary}
- Angantyr project: Pythia for heavy ion physics.
- Strong points:
1. Multiplicity.
2. Cross sections and forward production.
3. Large open source infrastructure.
4. (not covered) Trigger process specification, UPCs, parton shower variations, external matrix elements, ...
- Work in progress:
1. Flow with shoving.
2. Hadronic rescattering.

\section*{Summary}
- Angantyr project: Pythia for heavy ion physics.
- Strong points:
1. Multiplicity.
2. Cross sections and forward production.
3. Large open source infrastructure.
4. (not covered) Trigger process specification, UPCs, parton shower variations, external matrix elements, ...
- Work in progress:
1. Flow with shoving.
2. Hadronic rescattering.
3. (not covered) Strangeness with rope hadronization.
- Another geometry at high energies will provide valuable input.

Thank you for the workshop!```

