Opportunities of OO collisions at STAR

Wei Li (Rice University) for the STAR collaboration

QGP droplet in small systems

STAR BUR21 QM2019

Success of hydro. models in small systems but still many open questions, e.g.,:

- Role of sub-nucleonic fluctuations
- Contribution of initial momentum correlations (unrelated to geometry)
- Pre-equilibrium vs hydrodynamics?

QGP droplet in small systems

What is the time-scale (origin) for the emergence of collectivity?

Initial momentum correlations

A comprehensive scan of (a)symmetric systems + improved detectors at RHIC!

Proposal of an exploratory OO run at RHIC Run21

Expect a total of 24 cryo-weeks

STAR Bean User Request 2021

Single-Beam	$\sqrt{s_{ m NN}}$	Run Time	Species	Events	Priority	
Energy (GeV/nucleon)	(GeV)			(MinBias)		
3.85	7.7	11-20 weeks	Au+Au	100 M	1	
3.85	3 (FXT)	3 days	Au+Au	300 M	2	
44.5	9.2 (FXT)	$0.5 \mathrm{\ days}$	Au+Au	50 M	2	
70	11.5 (FXT)	$0.5 \mathrm{\ days}$	Au+Au	50 M	2 $ $	
100	13.7 (FXT)	$0.5 \mathrm{\ days}$	Au+Au	50 M	2	_
100	200	1 week	О+О	400 M 200 M (central)	3	~0.5 nb ⁻¹
8.35	17.1	2.5 weeks	Au+Au	250 M	3	_
3.85	3 (FXT)	3 weeks	Au+Au	2 B	3	

BNL PAC report

"The PAC considers as important to the overall RHIC scientific program and a third priority for STAR data-taking an exploratory 1 week O+O run at VSNN = 200 GeV (200M central)."

"The O+O run would be novel and exploratory, and offers the chance to shed new light on questions related to whether, and if so how, droplets of QGP can form in small-size collisions. Although an O+O run could also be considered in a future year, these questions are pressing and topical now."

Why OO at RHIC?

	pAu	dAu	¹⁶ O+ ¹⁶ O
<n<sub>part></n<sub>	5.8	8.8	9.5

Initial-state geometry:

Asymmetic: <u>sub-nucleon</u> fluct. more important

Symmetric: <u>nucleon fluct. more important</u> \rightarrow better control of b and geometry?

Synergy with pO/OO program at LHC energies

Collective flow in OO at RHIC and the LHC

Energy indep. of $v_n(p_T)$ from 0.2 to 5 TeV in largest and smallest systems

How about 00? nucleonic vs. sub-nucleonic fluctuations at different energies?

Collective flow in OO at RHIC and the LHC

 v_2 -< p_T > correlation hybrid IP-Glasma+MUSIC+UrQMD model O+O 200 GeV 0.4O+O 5020 GeV 0.3 $\hat{\rho}(v_2^2,[p_T])$ -0.1"Initial flow" $0.2 < p_T < 2 \text{ GeV}$ -0.220 40 60 80 100

Unambiguous observation of initial momentum correlations? (caveat: behavior of nonflow to be investigated)

centrality[%]

Giacalone et. al. PRL 125, 192301 (2020)

STAR detector at small system scans (till 2017)

Earlier small system results mostly limited at $|\eta| < 1$

- BBC resolution not ideal
- Nonflow uncertainties large

STAR detector now and beyond (2019+)

Extended η, p_T, PID coverage of central detector

New forward EPD:

- better EP resolution and handle of nonflow
- forward centrality → check biases

Projected performance - collectivity

• Precise measurement of $v_2\{4\}$ signal ≥ 0.04 -0.06 over wide centrality/multiplicity ranges

OO v₂{4} projection

Std. cumulant

 $v_{2}\{4\} \sim 0.05 \text{ in dAu}$

High precision PID v₂, v₃
 and spectra

STAR BUR21

At the LHC

p₊ (GeV)

Search for onset (?) of jet quenching

Apparent suppression for $\langle N_{part} \rangle \sim 6$

At the LHC

Search for onset (?) of jet quenching

Apparent suppression for $\langle N_{part} \rangle \sim 6$

can be explained by centrality bias

Minimum Bias OO: no centrality bias

High precision up to $p_T \sim 12$ GeV to differentiate various model scenarios

Centrality dependence: smaller bias in OO

to be updated for 200 GeV

Summary

Lighter-ion systems important in providing new insights to many open questions on collectivity in small systems

STAR proposed a one-week exploratory OO run at RHIC in 2021, aiming to

- To further constrain the role of sub-nucleonic fluctuations and "initial flow" in the observed final-state collectivity
- Unambiguous observation of jet quenching in small systems $(N_{part} \sim 10-20)$?

OO as a cornerstone to motivate future scans of lighter ions at RHIC and LHC!

Acknowledgement

Office of Science

Backups