Experimental opportunities with O-O and p-O collisions

- Searching for jet quenching in a small system
 - Inclusive hadron R_{AA} , LF/HF/jet R_{AA}
 - Photon/Z-tagged jet and hadron spectra
 - Semi-inclusive h-jet recoil

Experimental opportunities with O-O and p-O collisions

- Searching for jet quenching in a small system
 - Inclusive hadron R_{AA}, LF/HF/jet R_{AA}
 - Photon/Z-tagged jet and hadron spectra
 - Semi-inclusive h-jet recoil
- Collective effects in *light*-ion collisions
 - Unidentified and identified-hadron v_n
 - Higher-order correlations of v_n coefficients
 - $<p_T>-v_n$ correlations → separate initial-state momentum correlations and geometry

Experimental opportunities with O-O and p-O collisions

- Searching for jet quenching in a small system
 - Inclusive hadron R_{AA}, LF/HF/jet R_{AA}
 - Photon/Z-tagged jet and hadron spectra
 - Semi-inclusive h-jet recoil
- Collective effects in *light*-ion collisions
 - Unidentified and identified-hadron v_n
 - Higher-order correlations of v_n coefficients
 - \circ <p_T>-v_n correlations → separate initial-state momentum correlations and geometry
- Strangeness enhancement vs N_{part}
- Quarkonia suppression/melting
- Hadron-hadron interactions, search for bound states
- Photoproduction in ultraperipheral collisions
- yy, yp, yO collisions
- nPDFs with electroweak bosons, dijet, D mesons

Alice Ohlson , Guilherme Milhano, Yen-Jie Lee

- Double-differential (p_T, η) identified hadron cross-sections
 - Important input for astrophysical calculations!
 e.g. air-shower simulations

Experimental challenges with O-O and p-O collisions

- 1) Experimental
 - Statistical uncertainties
 - Systematic uncertainties due to detector effects
 - Selection bias in centrality selection
- 2) Theoretical uncertainties
 - nPDF uncertainties
 - Uncertainties on Glauber model calculations
 - Interpolation/extrapolation
- 3) LHC performance
 - Length of the run / luminosity delivered
 - pp reference run (and at what energy?)
 - Pileup
 - Quality of the beam, e.g. transmutations

Alice Ohlson, Guilherme Milhano, Yen-Jie Lee

Do we need a pp reference?

- Do we need/want a pp reference run? At what energy? How much statistics?
- What observables can be measured without a pp reference?
 - Flow coefficients/correlations, h-jet recoil, h-h interactions, strangeness enhancement,...
- What observables cannot be explored without a same-energy pp reference?
 - RAA (for light flavor, heavy flavor, and jets)
 - nPDF: need pp reference for p-O run
- If O-O and p-O are at different c.o.m. energies, do we want pp reference runs for one or the other or both?
 - Looks like a pp ref at the p-O energy will be difficult. Would p-O and O-p help? (N.B. O-p not currently requested)

• Suggestion for after the workshop: an exclusion plot for the possibility of observing jet quenching based on R_{AA} , with and without a pp reference

Can we interpolate the reference?

- ALICE estimation for uncertainty due to interpolation is 2-3%
- But we have seen before that interpolations can be dangerous!

• N.B. If we run O-O at 7 TeV, then a pp reference from Run 1 exists, but due to hardware and software changes there would probably be little/no cancelation of uncertainties, and it's not clear all relevant observables were measured in Run 1.

Further questions for discussion...

- What energies do we want for p-O and O-O?
 - As high as possible for hard probes?
 - Same as Pb-Pb for comparisons?
- What integrated luminosity do we want/need for p-O and O-O?
 - Projections shown here assume $L_{int} = 1 \text{ or } 0.5 \text{ nb}^{-1}$, $\sqrt{s_{NN}} = 6.37 \text{ or } 7 \text{ TeV}$ for O-O
 - LHCb requests 2 nb⁻¹ for p-O