





# Initial Interaction Vertex Multiplicity Study for ProtoDUNE-SP

24<sup>th</sup> November, 2020 – Systematic Effort Meeting

**Stefano Vergani HEP GROUP – Cavendish Laboratory** 

- Personal Introduction
- Multiplicity analysis on MC true and reconstructed events
- A first approach to high level efficiency metric
- Future work and Q&A



# **Personal Introduction**

- PhD student in High Energy Physics at the University of Cambridge, H
- BSc in Physics (Milan, ), MSc in Physics (ETH Zurich, )
- Supervisors: Leigh Whitehead and Melissa Uchida (Cambridge), Michael Wang (Fermilab)
- Works in the Pandora team -> Software development for Pandora, data analysis for ProtoDUNE-SP, specialised in Machine Learning
- email: <u>sv408@hep.phy.cam.ac.uk</u> or DUNE Slack



- The file I have been using is ProtoDUNE-SP Production 2 1 GeV Monte Carlo Space Charge
- Using

<u>https://cdcvs.fnal.gov/redmine/projects/protoduneana/repository/revisions/develop/entry/pr</u> <u>otoduneana/singlephase/Pion/PionAnalyzer\_module.cc</u> I obtain root files containing information about MC truth and reconstruction using Pandora

- All events with <15 hits are cut as well as excited nuclei (PDG code > 5000).
- With MC information, all daughters with PDG code |11| or 22 are called showers, the others tracks.
- Since  $\pi_0$  mostly decay into a couple of photons, a single  $\pi_0$  counts as 2 showers.
- With reco information, everything with CNN track score <0.3 is called shower otherwise track. We use only track score from the collection plane.



| Beam Particle | Count |
|---------------|-------|
| $e^+$         | 19015 |
| р             | 4424  |
| $\pi^+$       | 3700  |
| $\mu^+$       | 272   |
| $K^+$         | 5     |
| total         | 27416 |



- A first estimation of high-level efficiency metric : if for a given event the number of reco daughters equals the number of true daughters,
- histogram is filled.
- After processing all events, ratio between this histogram and mc true histogram is shown.
- 0 means that particular topology was never perfectly reconstructed, 1 means that particular topology was always perfectly reconstructed.





# All Beam Particles – MC True before and after cuts



after cut on nHits

Before cut

OF

÷Ε

# All Beam Particles – Reco before and after cuts



Before cut

after cut on nHits

# All Beam Particles – Ratio before and after cuts



after cut on nHits



#### **Positron Beam Particle – cut on nHits**

ĤE





### **Positron Beam Particle – cut on nHits**



Channels





#### **Pion Plus Beam Particle – cut on Nhits**



Number of Showers reco Number of Tracks







## **Pion Plus Beam Particle – cut on Nhits**



CAMBRIDGE

**STEFANO VERGANI – HEP GROUP** 

## DEEP UNDERGROUND NEUTRINO EXPERIMENT

# **Proton Beam Particle – cut on Nhits**

ĤĒ





# **Proton Beam Particle – cut on Nhits**



Channels





- •Check performance explicitly for the analysis channels (using the same truth definition)
- •Look in more detail at the events that aren't correctly reconstructed which particles are missed?



