

Treating cancer with radiation : a new approach with FLASH Therapy

J Bourhis, JF Germond, C Bailat, P Montay-Gruel, P Jorge, R Kinj, D Clerc, M Ozsahin, K Lambercy, O Gaide, W Jeanneret, T Boehlen, R Moeckli, F Bochud, MC Vozenin,

@ Lausanne University Hospital (CHUV) Switzerland

Cancer cure in 2021?

How do we fight cancer ?

What is FLASH therapy ?

= a new way of delivering radiotherapy

Unil

« FLASH » is a biological observation

= A reduction of radiation toxicity to normal healthy tissues,

while maintaining a similar effect on tumors

when comparing

ultra-high

to

conventional dose rates

Historical perspective

2014 Re-discovery ...

1) Sparing normal tissues

2) No sparing of tumors

Favaudon & Vozenin

RESEARCH HIGHLIGHTS

IN BRIEF

RADIOTHERAPY

FLASHing tumours

A new study in mice suggests that radiation delivered in short pulses at ultrahigh dose rates (FLASH) is as effective against lung tumours as conventional protracted single lower dose rates and has fewer side effects. Using both orthotopic lung tumours in immunocompetent mice and human lung tumour xenografts in nude mice, Favaudon *et al.* showed that FLASH irradiation caused less lung fibrogenesis and less apoptosis in normal tissue than conventional radiation. Although this technique was only tested in one tumour type, it suggests that delivery methods are crucial to minimizing radiation treatment side effects, and it has implications for therapeutic protocols. **ORIGINAL RESEARCH PAPER** Favaudon, V. *et al.* Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. *Sci. Transl Med.* **6**, 245ra93 (2014)

What is the magnitude

of the sparing effect on

normal tissues ?

FLASH is consistently associated with a relative sparing of normal tissues *(compared to normal radiotherapy):*

1) in several types of tissues (brain, skin, lung, GI ...)

2) in several animal species (cat, mouse, pig, Z-fish)

3) with several types of beam and energy (electrons, X-rays, protons)

4) accross a few Institutions (Europe, USA)

Results of the CHUV were first confirmed @ Stanford University

"... Pre-clinical data indicate a marked reduction of normal tissues side effects while maintaining the destruction of tumor cells.

This could revolutionize the field ov radiation oncology ...*

Pr. Billy LOO MD PhD, Thoracic radiation oncology program Stanford Cancer Institute

* Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator, IJRO. Juin 2016. Bill Loo, (Stanford University

Example N° 1 : FLASH effect on the skin (Pig)

(skin of a pig, @ 9 months post-RT)

Vozenin et al Clin Cancer Res 2018

Example N°2 in normal brain (mice)

Dose rate (Gy/s)

Same dose

Montay-Gruel Radiother Oncol 2017

FLASH versus Normal RT in mouse brain

Allen et al, Rad Res, 2020

Less inflammation

Montay-Gruel et al, Rad Res, 2020

and the second se

Blood vessel protection

Alaghband et al, Cancers, 2020

Protection of juvenile brain

What is the effect of FLASH

on tumors ?

So far ... no sparing effect for tumors with FLASH-RT :

1) in mouse : breast, H/N, glioma, lung, GI xenografts and orthotopic models

2) in a phase I veterinarian clinical trial in SCC of cat-patients

High cure rate in cat cancer patients (a veterinarian clinical trial @ CHUV)

6 cats with spontaneous cancers treated with FLASH

Minimal mucosal toxicity swallowing preserved
84% tumor control rate at 1 year

+3 semait

+ 1 semaile

+6mois

How does it works ?

Unil

Potential mechanisms ?

Lower production of H2O2/contribution of O2

(Montay-Gruel, 2019; Adrian, 2019)

Lower level of persistent DNA damages and senescent cells

(Fouillade, 2019)

Metabolism including redox (Spitz, 2019)

Inflammation/Immune system

(Favaudon, 2014; Montay-Gruel, 2019; Simmons, 2019; Diffenderfer, 2019)

Signaling pathways/Stem cells protection

(Montay-Gruel, 2017, Fouillade, 2019, Alaghband, 2010)

Vascular protection

(Montay-Gruel, 2020; Allen, 2020)

Unil | Université de

Mechanisms ? Some level of O2 dependency

FLASH-RT spares lung basal stem cells in vitro

Fouilhade Curie institute

Increased proportion of remaining of human basal stem cells after FLASH-RT

Are there

potential limitations

for clinical use ?

How high should be the dose rate to observe a FLASH effect ?

(for small volumes / with electrons)

Conditions to obtain or miss the FLASH effect

JF Germond, CHUV

Potential limitations for the clinical translation ?

The experimental conditions to observe a FLASH effect were essentially :

- Small volumes of normal tissues (a few cc)
- Mainly (but not only) with single dose (7-10 Gy or higher)
- Overall Treatment Time < 100-200 ms

Is the magnitude of the benefit clinically meaningful ? Example for the pig's skin

(late effects @ 9 months post-RT)

Vozenin et al Clin Cancer Res 2019

... Clinical translation

is ongoing ...

Mail

Great interest in the radiation oncology community

- 1) Promizing, reproducible and consistent pre-clinical observations
- 2) Potentially less toxic, more efficient treatments for the radio-resistant tumors

3) Numerous projects initiated world wide

For clinical translation : additional safety measures are needed

... (ex @ CHUV :)

Pre-treatment

Treatment

Dosimetry check

	Pre-treatment	Alanine A	Alanine B
	[Gy]	[Gy]	[Gy]
Dose [Gy]	14.9	14.9	14.9

PASSIVE DOSIMETERS

Independent pulses and time counter device for beam stopping

First treatment of a patient with FLASH (CHUV, Oct 2018)

150 Gy/s Overall time 90 ms

Unil | Université de Lausanne

FLASH with Protons (broad beam)

Varian and the Cincinnati Children's/UC Health Proton Therapy Center Announce Initial Patient

Treated in the FAST-01 First Human Clinical Trial of FLASH Therapy for Cancer

- First patient in the world to participate in a clinical trial of FLASH therapy

- Physicians and researchers at Cincinnati's Children's/UC Health Proton Therapy Center are using a Varian ProBeam® proton therapy system modified to deliver

Transfert clinique au CHUV (I)

FLASH-Mobetron

Only for superficial skin cancers

UNIL | Université de Lausanne ss release Lausanne, Switzerland & Sunnyvale, USA , June 18 2020 1

IntraOp and Lausanne University Hospital Announce Collaboration in FLASH

A collaborative R&D agreement will advance

FLASH radiotherapy for cancer patients

The Lausanne University Hospital (CHUV) and IntraOp Medical Corporation have announced a research and development collaboration to accelerate the development of FLASH radiotherapy toward first human trials.

First Investigational Trials Planned with Mobetron FLASH HDR

Lausanne University Hospital Clinical Translation Initiatives:

Impulse Trial: Phase I dose escalation study for multiresistant melanoma skin metastases (Mobetron-FLASH @ CHUV)		NMSC Trial: Randomized phase II trial for BCC and SCC of the skin (Mobetron-FLASH @ CHUV)		
Classical 3 x 3 dose escalation : 22 Gy to 34 Gy		•	FLASH with Electrons single dose 22 Gy	
First cohort Small fields < 30 cc	Second Cohort Larger fields 30-100 cc	Randomisation volumes < 30 cc	SOC 5 x 7 Gy	
Primary Endpoint : DLT / MTD with independent blinded photograph review		Primary Endpoint : composite (toxicity / tumor control) with independent blinded review		
Status : Enrollment expected to start in 2020		Status : Enrollment expected to start in 2021		

Courtesy of Prof. Jean Bourhis

Transfert clinique @ CHUV (II) : intra-operative FLASH-THERAPY

With Pr Simon, Pr Demartines, Pr Mathevet

For cancers not amenable to A complete resection

What about large tumor volumes and deep seated tumors ?

- Unmet clinical need : this is where we have most of the tumor failures ...

- So far no FLASH pre-clinical data mimicking these clinical situations

- No FLASH irradiating device is currently available : technical challenges

- FLASH characteristics may not help for its use in such large volumes ?

Next step : CHUV-CERN project

For deep seated tumors

La

Press Release

Lausanne and Geneva, September 15th 2020

î∖ 3

Lausanne University Hospital and CERN collaborate together on a pioneering new cancer radiotherapy facility

Lausanne University Hospital (CHUV) and CERN, in Switzerland, are collaborating to develop the conceptual design of an innovative radiotherapy facility, used for cancer treatment. The facility will capitalise on CERN breakthrough accelerator technology applied to a technique called FLASH radiotherapy, which delivers high-energy electrons to treat tumours. The result is a cutting-edge form of cancer treatment, highly targeted and capable of reaching deep into the patient's body, with less side-effects. The first phase of the study comes to a conclusion this September.

In radiotherapy, the FLASH effect appears when a high dose of radiation is administered almost instantaneously - in milliseconds instead of minutes. In this case, the tumour tissue is damaged in the same manner as with conventional radiotherapy, whereas the healthy tissue appears to be less affected, meaning that less side effects are expected.

- CHUV and CERN are actively collaborating on the realization of a clinical FLASH facility for large, deepseated tumors.
- We have worked intensively and are now confident that the facility is feasible and are establishing the design.
- We are now working towards the next steps of 1 project, with the target of a clinical facility.

The remarkable connection between CLIC and FLASH

Both need:

- Very intense electron beams
 - CLIC to provide luminosity for experiments
 - FLASH to provide dose fast for biological FLASH effect
- Very precisely controlled electron beams
 - CLIC to reduce the power consumption of the facility
 - FLASH to provide reliable treatment in a clinical setting
- High accelerating gradient
 - CLIC fit facility in the Geneva area and limit cost
 - FLASH fit facility on a typical hospital campus and limit cost of treatment

CLIC technology for a FLASH facility being designed in collaboration with CHUV

Which tumor type first ? : glioblastoma ? one of the most non-curable cancer

2019 May 28; 116(22): 10943–10951. Published online 2019 May 16. doi: 10.1073/pnas.1901777116 Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species

Pierre Montay-Gruel, Munjal M. Acharya, Kristoffer Petersson, et al

Proc Natl Acad Sci U S A.

Less toxicity

CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY

Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice International States States

More efficacy

Pierre Montay-Gruel¹, Munjal M. Acharya², Patrik Gonçalves Jorge^{1,3}, Benoît Petit¹, Ioannis G. Petridis¹, Philippe Fuchs¹, Ron Leavitt¹, Kristoffer Petersson^{1,3}, Maude Gondré^{1,3}, Jonathan Ollivier¹, Raphael Moeckli³, François Bochud³, Claude Bailat³, Jean Bourhis¹, Jean-François Germond³, Charles L. Limoli², and Marie-Catherine Vozenin¹

FLASH therapy CERN–CHUV project

ISREC & BILTEMA Foundations

Construction of the prototype

Installation 2023

First patient 2024-25

Conclusions

1) FLASH :

- Increases the **differential** effect between normal tissues & tumors
- Operates at high dose / fraction, delivered in few milliseconds
- Mechanisms ?

2) Clinical translation :

- Optimal parameters for obtaining a FLASH effect in large fields needs to be investigated
- <u>Both</u> FLASH & high conformal delivery are needed : *technical challenges (CERN* +++)

Remerciements

L'équipe FLASH therapy du CHUV

Pr Vozenin (cheffe de laboratoire)

Pr Bochud et l'IRA

UNIL & CHUV : Pr P Eckert, Mr O Peters, Pr JD Tissot, Pr PF Leyvraz,

DO : Pr Coukos, Pr Kandalaft & l'équipe du CTE

Sponsors : ISREC & Fondation Biltema, Fondation CePO, Fond'Action, FNS, ANR, PO1, Fondation CHUV

Partenaires : PMB, CERN, IntraOp, RaySearch

Recherche de nouveaux partenaires en cours pour le projet CERN-CHUV

Device	Mobetron	Oriatron eRT6	Kinetron	Modified	Modified Varian	Novac7
	(IntraOp)	(PMB Alcen)	(CGRMeV)	Elekta		(Sordina)
Reference	This publication	Jaccard 14	Lansonneur ¹⁶	Lempart ¹⁵	Schüler ^{8,17}	Felici ²⁵
		Petersson 26				
Available beam energy [MeV]	6 and 9	6	4.5	10	9, 16 and 20	7
Maximum average dose rate [Gy/s]	> 700 @ 6 MeV	1000	NA*	≥ 300	74 @ 9 MeV	540
	> 800 @ 9 MeV				300 @ 16 MeV	
					200 @ 20 MeV	
Maximum dose per pulse [Gy]	>8 @6MeV	10	1	1.9	1.67 @ 16 MeV	18.2
	>9 @9MeV				1.85 @ 20 MeV	
Max. beam size @ max. dose rate [cm]	4 @ 90%	NA	NA	2 (5% flatness)	1 (90% isodose)	0.5 (FWHM)
Short term stability [%]	0.8	<1	NA	1 to 4***	NA	NA
Long term stability	1.8 @ 6 MeV	4.1%	NA	NA	NA	NA
	2.3 @ 9 MeV					

* NA: data not available; ** during 10 mins; 7 to 11 for > 10 mins