SYCL For HEP: Experimenting with
GPU Kernels in Pythia8. (Draft)

Introduction to SYCL

The SYCL [https://www.khronos.org/reqistry/SYCL/specs/sycl-1.2.1.pdf] specification by the
Kronos group is an abstraction layer, allowing for a single code base to compiled and
executed on multiple different heterogeneous computing architectures. As opposed to writing
specific OpenCL, CUDA, etc. implementations.

SYCL code is written in C++ and allows the use of language features such as templation and
lambda function, while hiding in the abstract layer many of the underlying complexities of
deploying an OpenCL style application. It allows for the easy integration of accelerated code
within larger, existing, C++ frameworks.

ComputeCpp is a full implementation of the SYCL 1.2.1 specification produced by CodePlay
[https://developer.codeplay.com/products/computecpp/ce/home/]. The community edition is
free to download and use. Downloading the software requires a free codeplay account
registration, the licence permits the redistribution of the libComputeCpp.so runtime which
must be linked against by the accelerated application.

At compilation time ComputeCpp isolates and extracts SYCL code found inside the
application (i.e. computational kernels), and compiles this to an intermediate format. By
default a Standard Portable Intermediate Representation (SPIR-V) is produced (SPIR-V was
introduced in 2015 and works as a replacement to SPIR). SPIR and SPIR-V are intermediate
representations of OpenCL and as such are deployable to hardware produced by AMD, Intel
and ARM.

While Nvidia GPUs do provide an OpenCL interface, they do not provide a SPIR-V interface.
Hence to target Nvidia hardware, ComputeCpp compiles instead to the Parallel Thread
Execution (PTX) binary format. PTX is the intermediate representation of the CUDA
language.

A limitation of the free community edition is the ability to only target a single representation
(SPIR, SPIR-V or PTX), Multi-Binary Support is a feature of the professional edition.

12



TensorFlow
OpenCV

High Level Frameworks
Caffe

Single source C++

Parallel Programming

Standardized intermediate
binaries

Target hardware with
SPIR-V drivers

Fig 1 [Image credit:
https://www.codeplay.com/portal/news/2017/12/06/adding-experimental-ptx-support-to-comp
utecpp-for-nvidia-reg-hardware.html]

Relationship between SYCL and OneAPI

OneAPI [https://oneapi.com] builds on top of ISO standard C++17 and Khronos SYCL to
additionally add Data Parallel C++ (DPC++) to the specification. This adds functionality such
as Unified Shared Memory. Both Intel and Codeplay develop OneAPI toolchains, and in
addition there is an open source project. The OneAPI specification covers multiple APls
which specialise in video processing, deep neural networks, etc.

Potential benefits and limitations

In the following we will make the assumption that SYCL based acceleration should be a
purely optional component of a HEP software package or library which may be enabled with
flags at compile time, and subsequently executed on a system with compatible OpenCL
drivers.

C++ is widely used in performant HEP software, SYCL code can be used to augment
existing packages by offloading specific computations to heterogeneous processing devices.

This can theoretically allow a single block of C++ code to be executed natively by the CPU
(i.e. not using SYCL), or to be compiled as part of a SYCL kernel running in either Host
Mode or Device Mode. Here Host mode refers to an emulated backend which allows for the
execution of device code in native C++. Device mode dispatches at runtime to an available
accelerator, which will be one of GPU, Accelerator or CPU - depending on hardware and
driver availability.



The Host mode is not designed for production systems, the OpenCL device emulation adds
significant overheads. But it does allow SYCL kernels to be debugged using standard tools
such as gdb.

There are two main considerations when attempting to reuse code inside both a standard
C++ function call and a SYCL kernel.

e Memory access model. The input and output data from the computation must be
shipped to and from the execution device. The input data should therefore ideally be
stored in memory as a contiguous array of an appropriate data structure. Either a
C-style array, or a single dimensional std: : vector. An array of the vec<double,
4> structure is used in the example below to represent the 4-vectors of a set of
particles.

e Computation model. The optimal design of an algorithm designed to process a large
task sequentially may differ somewhat from that of the same algorithm designed to
process a large task concurrently. For example, the sequential design may use
branching logic to avoid performing an expensive computation when it can deduce
that the result would not be useful. Whereas deployed on a GPU, all execution units
within a given group must execute in lockstep with each other. Here long conditional
branches, or variable length loops are to be avoided. With the greatest throughput
obtained for a fixed-length computation over all permissible inputs.

As a result of these constraints, the easiest functionality of the application to convert such
that it operates efficiently when used within SYCL kernels is that which corresponds to the
application’s lower-level classes, and utility classes. Examples would include a 4-vector
class, and a transformation matrix class to operate on 4-vectors. As a side note, SYCL
interface to the Eigen matrix library is available.

When it then comes to integrating the main computational function within the SYCL kernel,
the choice must then be made between.
e Providing two implementations of the function, one optimised for sequential / CPU
processing and another optimised for parallel processing within a kernel.
e Provide one implementation but use preprocessor macros to make (small)
modifications to the source code depending on the compiler.
e Provide one implementation which is efficiently usable under both execution
paradigms.
This third category is likely rare, so most functions will likely use either of the first two
categories - which have respective trade offs in terms of code comprehension and
fragmentation.

Integrating SYCL with existing HEP software

In this example the Pythia8 Monte Carlo version 8.303
[http://home.thep.lu.se/~torbjorn/Pythia.html] will be built from source on CentOS7 using the
gcc 7.5 toolchain. The build process will be integrated with CodePlay’s ComputeCpp v.1.2.1.

14



Pythia8 uses a GNU style build system (i.e. ./configure, followed by make), with optional
external libraries supplied during the configure phase. Documentation is provided by

CodePlay on the integration of both GNU build and CMake build configurations, covering the
majority of HEP software.

SYCL support requires that the following externals are available:

OpenCL API Headers from the Khronos Group
[https://github.com/KhronosGroup/OpenCL-Headers]
ComputeCpp Community Edition SDK
[https://developer.codeplay.com/products/computecpp/ce/download], here using
ComputeCpp-CE-2.1.0-x86_64-linux-gnu. This provides:

o SYCL include headers.

o libComputeCpp.so (the SYCL runtime).

o compute++ binary (the SYCL device compiler), and other helper binaries

such as computecpp info

gcc 4.8 or higher

CMake 3.4.3 or higher (for cmake applications, not used in the following example).

While the build process can be modified to only use compute++, SYCL support is more
commonly enabled via a multi-compiler approach as illustrated below, using both
compute++ and the gcc supplied g++ compiler.

15



C++ Application

Has SYCL
No kemel(s)?

C++source file
No compute++ with SYCL
kernels

C++ source file

compute++ generated
integration Header

SPIR 1.2 Binary

compute++ generated
Integration Header

SPIR-V Binary

h A

A

Host Compiler

5

Host Compiler

Object file ; Object file

C++ Application Binary

Fig 2 [Image credit
https://developer.codeplay.com/products/computecpp/ce/quides/integration-guide]

The device compiler, compute++, is used to generate binaries in SPIR, SPIR-V or PTX (not
shown in figure) format for any kernels found within each source file. This procedure outputs
an integration header which is included in Pythia8’s standard object compilation. For source
files without any kernels, the integration header is empty. This secondary host compilation
allows ComputeCpp to access the compiled kernels at runtime.

In practice, this requires the generation and use of an intermediate compilation fragment, the
integration header with suffix .sycl

Make fragment. Generate src/file.sycl from src/file.cc:
$ (LOCAL _SRC) /%.sycl: $(LOCAL SRC)/%.cc

16



$ (COMPUTECPP) ${COMPUTECPP DEVICE COMPILER FLAGS} $< -o $@ -c
$ (OBJ_COMMON) -I$ (ComputeCpp INCLUDE DIR) -I$ (OpenCL INCLUDE DIR)

Here $ (COMPUTECPP) is the path to the compute++ binary, $ (OBJ_COMMON) are the
common g++ compiler flags, $ (ComputeCpp_INCLUDE_DIR) and

$ (OpenCL_INCLUDE DIR) are the respective CompureCpp and OpenCL header
directories, and $ (COMPUTECPP_DEVICE_COMPILER FLAGS) is setto

-sycl-target ptx64 -sycl-device-only
--gcc-toolchain=/home/epp/phsmai/sycl/gcc/gcc-7.5.0 install

Here we note that the ptx64 intermediate representation is specified - targeting Nvidia
hardware, and the gcc installation is specified explicitly as the system installation is not used
in this example.

The integration header is then injected into Pythia8’s normal object compilation.

Make fragment. Generate tmp/file.o from both src/file.ccand src/file.sycl.
Force file.sycl to be included at the top of file.cc. The SYCL additions are highlighted in
red.
$ (LOCAL _TMP) /%.0: $(LOCAL SRC)/%.sycl $(LOCAL SRC)/%.cc

$ (CXX) -include $* -o $Q@ -c $(OBJ_ COMMON)

Finally, the linker command is modified such that 1ibpythia8.so is linked to
libComputeCpp.so

Linker modification. The SYCL additions are highlighted in red.
LIB COMMON=-W1l,-rpath, $ (PREFIX LIB) -Wl,-rpath,$(ComputeCpp LIB DIR)
-L$ (ComputeCpp LIB DIR) -lComputeCpp -1dl $(GZIP_LIB)

With these modifications in place, Pythia authors may start to add kernels into the event
generator. The SYCL runtime will activate for any main executable built against this pythia8
shared library.

Kernel dispatch is handled at runtime based on the OpenCL drivers available on the
execution system. Given multiple choices, the kernel programmer may decide which device
is chosen for dispatch using various heuristics (e.g. favour GPUs). The parallelisation
capacity of the device can also be queried and used to optimise the chunking of the
computation.

The computecpp_info helper binary prints information about compatible devices on a given
system, the output of the application on the development machine is:

Device O0:
Device is supported : UNTESTED - Vendor not tested on this OS
Bitcode targets : ptx64
CL DEVICE NAME : Quadro P1000
CL_DEVICE_VENDOR : NVIDIA Corporation

17



: 450.80.02
: CL_DEVICE_TYPE GPU

CL_DRIVER_VERSION
CL_DEVICE_TYPE

For systems with zero hardware devices, the Host mode may be used as a fallback. As
noted above, this provides a software emulated OpenCL execution environment which is
designed for testing and debugging, it is not designed to be used in production.

If no supported hardware devices are available in a production job, it is always preferable to
perform the computation natively (i.e. as if SYCL was not compiled into Pythia8) than it
would be to dispatch in Host mode.

The following table presents matrix multiplication times for different matrix sizes, as
computed using a native C++ implementation running on a Intel(R) Core(TM) i7-7700 CPU
@ 3.60GHz with no explicit parallelisation, or a SYCL kernel dispatched to either the Quadro
P1000 GPU or to the Host mode emulator.

GPU acceleration on this entry-level card is noted to be around 100 times faster than CPU
computation for large matrices. For small matrices, the performance gain is lost due to the
overhead of GPU dispatch. Host mode, on the hand, is observed to be around 100 times
slower than CPU computation, this is due to the overhead of emulating an OpenCL
environment.

Matrix Size | Host Mode | Host Mode | CPU Time |CPU P1000 GPU | P1000 GPU
[NxN] Time [ms] | GFlops [ms] GFlops Time [ms] GFlops

64 180 3x10° 1 0.52 6 0.09

256 6,900 5x10° 110 0.32 26 1.29

1024 370,000 6x107 6,900 0.31 66 32.5

2048 Not Run Not Run 54,700 0.31 500 34.4

Table 1: CPU time in milliseconds and and giga floating point operations per second to
multiply two symmetric matrices.

Practical example of SYCL integration

Pythia 8 contains a full suite of models allowing it to simulate the multiple soft and semi-hard
scatters (MPI) which occur within a proton-proton interaction in addition to the hard scatter.
These, in addition to the beam remnant, undergo a colour reconnection simulation before the
final state is frozen out in hadronisation.

Simulating 1,000 QCD events at sqgrt(s) = 14 TeV (p; min 20 GeV) in Pythia 8.303 using a
single 3.6 GHz CPU core and the default tune takes 5.1 seconds. This time is relatively
insensitive to the scale of the hard interaction, increasing p; min to 2 TeV increases the
overall time by 12%, to 5.7 seconds.

18



More sophisticated models such as
[https://link.springer.com/article/10.1007/JHEP08(2015)003] allow for colour reconnections to
be computed beyond leading colour, including a realistic treatment of the SU(3) colour
structure. This alternate simulation provides significantly better physics modelling of the soft
MPI-generated structure of the event when compared to LHC data. It is enabled by setting
both ColourReconnection and BeamRemnants parameters to mode 1
[http://home.thep.lu.se/~torbjorn/pythia82html/ColourReconnection.html#section].

The equivalent timings for 1,000 events using the beyond leading colour model are 22.3
seconds for p; min of 20 GeV, and 27.0 seconds for pT min of 2 TeV. These correspond to a
factor x4.4 and x4.7 (respective) increase in CPU cost to simulate a given number of events.

Flame graphs are presented below for the default and beyond leading colour models for a p;
min of 2 TeV. The X-axis corresponds to the total CPU time of the job, the call stack is
visualised on the Y-axis.

Flame Graph

Fig 3: Flamegraph of default MPI modelling, covering 5.7 second. Only 0.4% of CPU time is
spent under Pythia8: :ColourReconnection: :next. The heaviest function under
Pythia8: :PartonLevel: :next iS Pythia8: :SimpleTimeShower: :pTnext, at 53%
(2.7 ms/event).

Flame Graph
|
| | [ |
| | | I |
| ] 1 [ |
I [libpy. "W [ _
. | n ibpythi..  libpythia8.solPyth.. [ [ ]
| (EEYEE ibpyth ] 1 Iibpythiag.solPythiad: L'niourReounn 1M 1=
501 ] libpy.. libpythiaB.sol Pythiag ::ColourReconnection: isin gledunction I llbm.so.. | |
BB ibpythias sotPythias: :ColourReconnection: :updateJunctionTrials Il DOEN|| EWibmso. W
3,50 m;mmm I8 libpy.. ||| lbpythia8.so.. | ||
BRSO Iy i s IO e CoTec o K WBpYENN iopytniss.sotpy. |
bpythia8.solPythia8::PartonLevel: inext 1]

I 0Es
| Iibpythia8.so!Pythiag::Pythia::next

Fig 4: Flamegraph of beyond leading colour modelling, covering 27 seconds. 77% of CPU
time is spent under Pythia8: :ColourReconnection: :next (20 ms/event). 11% of CPU
time is spent under Pythia8: : SimpleTimeShower: : pTnext (3 ms/event), comparable
to the default case.



Inspection of the expensive Pythia8: :ColourReconnection: :next call reveals the
most expensive call to be Pythia8: :ColourReconnection: : singleJunction. This is
called both directly, and within

Pythia8: :ColourReconnection: :updateJunctionTrials. These calls consume
23% and 42% of CPU, respectively, or 18 ms/event combined.

The computation sets up vectors of pseudoparticle and dipole objects, dipole objects
reference pseudoparticle objects by index. The singleJunction function performs trial
reconnections on either two or three input dipoles using the following logic.

The dipoles are subdivided into three roughly equal sized subsets by taking the modulo 3 on
each dipole’s colour index. The two-dipole singleJunction function is called over each
combination of indices, excluding identical and interchanged indices.

Example: for 4, 6 and 5 dipoles in each subgroup, a total of 31 calls are made.
Corresponding to the upper off-diagonal elements in blue.

Fig 5: For real events, a mean of 4,900 calls are made to the two-dipole function per
iteration, with a standard deviation of 3,400. The minimum and maximum calls were 212 and
23,080.

The three-dipole singleJunction is called over all triplets (i, j, k) of indices within each
subset, where i runs from 0 to N, j runs from (i+1) to N, and k runs from (j+1) to N. Here N is
the number of dipoles in the subset. For real events, a mean of 107,000 calls are made to
the three-dipole function per iteration, with a standard deviation of 115,000. The minimum
and maximum calls were 749 and 962,520.

The key quantity computed over each call to singleJunction is LambdaDiff, a floating
point parameter corresponding to the difference in the string-length and junction-length
between the dipoles. Each combination which is found to be energetically favourable to form
a junction (LambdaDiff is positive) is added to a list of trial reconnections for further
processing.

20



Parallelisation of singleJunction with SYCL

By encapsulating the logic of singleJunction in a SYCL kernel, the above parameter
space may be explored in parallel.

For this exercise, the input data will be copied into contiguous memory regions. However the
existing class structure used within Pythia8 is already very close to being directly usable
without format shifting. The time taken to perform the format-shift will be accounted for
separately.

In the following, sycl is a typedef of c1: : sycl, and sycl: :doubled is a typedef of
sycl::vec<sycl::cl double, 4>.Here ‘vec refers to a geometric vector. SYCL
versions of primitives, such as sycl: :cl_double, are used to maintain consistent
definition between the host and device.

Only four-vector data from the list of pseudoparticles in the event are required in the
computation of lambdaDiff, the data are copied into a C-style array sycl: :double4
particles [N] whose memory is assigned on the heap. This allocates storage for four
double precision inputs (i.e.a {0., 0., 0., 0.} struct) for each of the N particles, the
particles four-momentum are copied into this array. Alternatively, Pythia8’s Vec4 class could
be used directly inside SYCL kernels. This would require minimal modifications to Pythia.

Similarly memory is allocated for each dipole, here a sycl: :int4 is used to store indices to
two particles, a colour reconnection index, and a status index. A sycl: :double is used to
store the dipole’s creation time and a sycl: :doubled is used to store the dipole’s four
momentum.

The final input corresponds to the slicing of the dipole data into three subsets. This is stored
ina std: :vector<std: :vector<sycl::cl_int>>format, where the outer vector is of
size three and the inner vectors are of variable size, these contain indices within the dipole
memory structure. The inner vector's memory is used directly within SYCL, with no
additional manipulations required (beyond the use of the SYCL defined primitive type).

Finally the results of the three two-dipole computations and the three three-dipole
computations are stored within six allocated regions of memory. E.g. for the results of the
three two-dipole computations:

std: :unique ptr<sycl::cl _double[]> lambdaDiff 2dipole sycl[3];
for (size_t i = 0; i < 3; ++i) {
const size_ t dipsInSubset = dipSubsets.at(i).size()’
lambdaDiff 2dipole_sycl[i] =
std: :make unique<sycl::cl _double[]>(dipsInSubset
* dipsInSubset) ;

21



Kernel Setup

First a device queue is constructed. This encapsulates the OpenCL context, and handles the
full lifecycle of kernel submission and execution.

sycl: :queue deviceQueue (sycl selector, exception handler);

The optional sycl_selector is an implementation of sycl: :device_selector. This is
supplied with a list of the devices available on the machine - made accessible via platforms
(drivers). The selector choses which device will be used for dispatch. The

exception_ handler allows for the reporting of asymmetric exceptions, which may be
thrown from a different thread than the one executing Pythia.

SYCL requires exclusive access to the relevant ranges of host memory during kernel
execution. Some data within these ranges may need to be shipped to external processing
devices, and other data may need to be overwritten with returned values.

This is obtained via the use of buffers which bind to supplied addresses. Each buffer takes
ownership during its lifespan under the RIIA paradigm. The buffers are hence created within
a new scope to control their lifespan.

sycl::buffer<sycl::int4, 1> buf dipoles(dipoles_sycl.get(),
sycl: :range<l>(dipoles sycl.size()));

sycl: :buffer<sycl::double4d, 1>
buf particles(particles_sycl.get(),
sycl: :range<l>(particles.size()));

// ... Other buffers

The 1 in both the buffer and range template parameters indicate that the data represent a
one dimensional array.

Similar 1D input buffers are setup over each of the three subsets of dipole indices, and 2D
output buffers over the six output memory allocations.

The execution of a kernel is encapsulated using a command group handle (cgh). The
encapsulation occurs inside a lambda function which captures the buffers by reference.

First sycl: :accessor objects are constructed which declare the data dependency of the
kernel on the buffers. A read dependency copies the data to the external device, a
discard write dependency only copies the data from the device back to the host -
overwriting whatever happened to be there before. Only global device memory is used in this
example.

22



Second the sycl: : range of the computation is constructed. For the two-dipole
computation, we are computing in a two dimensional space. Up to 3 dimensions are
supported.

Finally a parallel for kernel is submitted over this range. This takes the form of another
lambda function, this captures by value.

for (size_ t i = 0; i < 3; ++i) {
deviceQueue.submit([&] (sycl::handler& cgh) {

auto acc_dipoles =
buf dipoles.get_access<sycl::access::mode::read>(cgh);

// ... Other mode::read inputs

auto acc_lambdaDiff =
buf lambdaDiff 2dipole[i].get_access<
sycl::access: :mode: :discard write>(cgh);

cl::sycl: :range<2> range (dipSubsets.at (i) .size(),
dipSubsets.at (i) .size())

cgh.parallel for<SJKernel>(range, [=] (sycl::id<2> item) ({
sycl::cl_int dipl = acc_dips[item[0]];
sycl::cl_int dip2 = acc_dips[item[1l]];
acc_lambdaDiff[item] = getLambdaDiffModeO (
dipl, dip2, &acc_dipoles[0], &acc_creationtimes[O0],
&acc_jmom[0], &acc_particles[0]);
})
})

The equivalent of the above is done also for the three three-junction kernels.

The class SJKernel is a dummy class name, it is only used to associate the C++ lambda
function to the compiled device kernel. The main logic of the execution is held here within
the getLambdaDiffModeO function. This function is provided with pointers to both the
dipole data array and the particle data array (when executing on the remote device, the &
operator applied to the accessor correctly maps to the remote devices’s memory, here global
memory on the GPU), along with the two dipole indices for which the lambda difference is to
be computed.

All C++ code within this function is executed in parallel on the GPU over the supplied range.
The return values, one double per execution, are written to the respective
buf_ lambdaDiff buffers.

Separate implementations are used in this example when computing singleJunction

natively vs. on the GPU. This is to explore the effect of different design choices which may
be made in the GPU implementation. However one could envisage a setup where the

23



getLambdaDiffModeO is instead called within a regular C++ loop in versions of the
software which were either compiled without SYCL support, or which do not have access to
a suitable OpenCL device at runtime.

The kernel dispatch performed by deviceQueue is asynchronous, i.e the call to submit
returns instantly. SYCL is able to use its knowledge of the data dependency relationship
between kernels to correctly order their execution. At present none of the six submitted
kernels have any dependency on each other, but a possible extension to this example would
be to introduce additional kernels which consume the buf _lambdaDif £ outputs and
perform additional computations on these. This can be used to setup highly efficient chains
of kernels with no host-device 1/0O overheads, as output data produced on-device from one
kernel will be read directly by the subsequent kernel.

The main thread running the Pythia8 executable will halt on the closing of the scope
containing the buffers. Under the RIIA design, the destruction of each buffer cannot
complete until there are no remaining accessors with an open handle on the buffer.

The results of the computation may then be inspected by iterating over the output data array

for (size t subset = 0; subset < 3; ++subset) ({
const size t dipsInSubset = dipSubsets.at(subset) .size();
for (int i = 0; i1 < dipsInSubset; ++i) {
for (int j =i + 1; j < dipsInSubset; ++j) {
const size_ t index = (i * dipsInSubset) + j;
sycl: :double result =
lambdaDiff 2dipole_sycl[subset].get()[ index ];

Performance metrics for CPU vs. GPU computation

The mean time required to perform different parts of the computation, not all contribute to the
final time as some are subsets or alternate formulations. The per event variance in the time
is observed to be greater than that of CPU processing.

For the CPU times in Table 2, these are narrow measures over just the lambda diff and
dipole computation functions. In addition, given a dipole pair, the C++ code additionally tries
to “walk” out along the string from the given point, performing potentially many more junction
attempts within the so-called “single” junction function. This was not implemented in the
SYCL version due to the presence of the while loop controlling this. This is why the CPU
times listed here are significantly smaller than the 27,000 mu s per event overall CPU time to
process each event, listed above.

24



Native C++ Operation

Time / Event [mu s]

Dipole Check (3x 2D) 52
LambdaDiff Compute (3x 2D) 20
Total for 3x 2D 72
Dipole Check (3x 2D) 6
LambdaDiff Compute (3x 3D) 257
Total for 3x 3D 263
Table 2
SYCL Operation Cumulative Time / Event [mu s]
Host data preparation® 155
& spawn and run three empty kernels 329
& copy particle and dipole data to GPU" 7,620
& copy dipole subsets to GPU' 12,670
& execute Kernels over the Range (3x 2D):
Empty Kernels 12,567
Compute Kernels ... 166,987
... with early exit after j <=i check 167,108
... with early exit after dipole checks' 165,322
... with early exit after time dilation checks 150,903
Copy results from GPU" 148,073

Table 3. Critical path show with'. Cases where smaller numbers are shown later on are
indicative of run-to-run fluctuations, which are larger for GPU dispatch than CPU

computation.

The host data preparation covers the copying of the particle 4-vector and dipole data into
contiguous host memory. These costs are relatively small here, at around 0.2 ms they are
within the run-to-run variation. By further modifying the memory structure used by the native
C++ implementation to be compatible with the SYCL implementation, this cost could be

reduced further.

The baseline cost to spawn three (empty) 1D kernels over a range of 1 is around 0.3 ms.

25



A major bottleneck is the time required to send the data required to perform the compute to
the GPU. 8 ms are required for the particle 4-vectors (mean size 5,600 bytes) and dipole
data (mean size 19,000 bytes). An additional 5 ms are required to send the mapping of the
(i, j) indices to be used inside the three kernels to the respective entries inside the dipole
data (mean size 600 bytes).

The execution of three empty kernels over their full 2D range takes around 13 ms. The
empty kernel is then replaced with different variations of the compute kernel. Each variation
makes increasing use of branching logic inside the kernel.

Starting at “Compute Kernel”, Lambda Diff is computed for each element of each 2D kernel.

For “Early exit after j <= i check” the kernel only processes (i,j) coordinates above the
diagonal, the majority of the work groups will contain work items over (i,j) pairs such that
every work item will pass, or every work item will fail. Hence this should remain efficient.

The “Early exit after dipole checks” and subsequent inclusion of “Early exit after time dilation
checks”, will both cause a greater amount of fragmentation in the execution flow of work
items within the work groups. In theory this should result in a poorer performance as the
branching logic inhibits the ability of multiple work items to process in parallel.

We see however that the difference in time between these strategies is similar and within
run-to run fluctuation, with the exception of the final exit after time dilation check which is
10% faster.

The final stage is copying back the results in their 2D arrays; this is the largest copy at a
mean of 83,600 bytes. The time required is not significant on top of the kernel execution and
is hence hard to determine accurately here.

Overall we see that on the entry level Quadro P1000 device, the computation is significantly
slower on the GPU. And, even for instantaneous computation, the data transfer overhead
alone would make the GPU offloading unproductive at the level described here.

Hybrid Processing

The computational paradigm may be shifted to better use the strengths of each platform.

The three 2D and three 3D loops over the junction space are performed on the CPU, but
only to apply either the cheap early rejection, or this plus the more expensive time dilation
rejection.

The GPU is still sent all particle and dipole data, but now it is sent three lists of pairs, (i,j),

and three lists of triplets (i,j,k), corresponding to the indices which survive the CPU early
rejection.

26



The kernel dimensionality is changed, instead of executing over 2D and 3D ranges, the
kernels execute over 1D ranges corresponding to the size of their input list.

The output buffers are also 1D instead of 2D or 3D, they are the same length as their input
list. This is where the primary savings in data transfer comes in.

This method becomes more optimal when only sparse entries in the 2D and 3D permutation
spaces correspond to valid solutions, and the cost to determine validity is low.

The simple index checks remove 77.4% of the parameter space, adding the expensive time
dilation check increases this to 99.8% of the parameter space. Note that the parameter
space here is taken as only above the upper diagonal, as on Fig 5. The equivalent numbers
for the 3D parameter space are 95.9% and 99.9994%.

Hence the problem could be refactored as simple checks (CPU), time dilation checks (CPU
or GPU Kernel), lambda diff (GPU Kernel, with possible dependency on lambda diff kernel).

Conclusions

SYCL allows for single-source C++ to be compiled both for CPU execution and into an
intermediate representation of OpenCL (SPIR-V) or CUDA (PTX). Machines with OpenCL
drivers may then choose to dispatch the computation to an accelerated device whereas
other machines are still able to execute the computation on the CPU.

To accommodate this, the compilation process is modified to first compile the kernel
representations with a SYCL compiler (CodePlay’s ComputeCpp community edition) and
generate an integration header, the integration header is included by the regular
g++/clang/etc. Compilation which allows the runtime to locate the compiled kernel binaries.
The final library is linked against the ComputeCpp runtime shared library which permits
distribution. Support for Makefile and CMake integrations are documented.

The Kernel dispatch is handled at runtime and can be customised / predicated upon the
choice of acceleration devices and their properties. A high level RIAA and data dependency
model allows for chains of kernels where the output of one kernel may be the input to
another to process in the correct order, maintaining data locality.

Issues common to GPU offloading persist, notably the additional latency for data transfer
which competes with any speed up due to parallelisation. Around 10 ms should be budgeted
for modest data transfers (O(25 kb)).

While the same C++ can be used for CPU and accelerator deployment, the code must
realistically conform to a coding paradigm which is appropriate for accelerator deployment.
This may involve some large refactoring projects. The main concerns are /O, typically via a
defined block of memory, and large-scale branching logic - which is to be avoided.

27



Lower level helper classes (e.g. four vector) generally require a small level of refactoring to
be made SYCL compliant, and then may be used inside the dual-use C++ compute
functions.

28



