

Detector Simulation in ExCALIBUR-HEP and towards SwiftHEP

Ben Morgan

Detector Simulation in Two Slides...

Event Generators covered earlier.

Detector Simulation in Two Slides...

http://geant4.cern.ch

Geant4 Development Objectives

1. Long term service to experiment/stakeholder requirements for production use

- Functionality, physics, and API needs
- Support, maintenance, testing, and validation

2. Continuous development to improve:

- Precision of, add new, physics models
- Computational performance
- Functionality, maintaining stability and sustainability for experiment/stakeholders

3. Monitor and plan for experiment/computing changes

- Computation challenges: e.g. HL-LHC, Intensity Frontier
- Evolution of architectures/APIs: GPU, FPGA, ARM etc.

Forecast Simulation Needs: LHC

- 2/3 of the computing resources are dedicated to MC simulation, all full sim
 - · fast sim not used in production yet
 - fully parametrised fast simulation approach for upgrade studies ALICE
- expected 10-100 times more data in Runs 3 and 4
 - cannot cover that with current usage of full sim

- R&D directions for performance improvement in Geant4 (Andrei Gheata)
- Detector simulation requirements from HEP Experiments (Marilena Bandieramonte)

<u>Towards a Fast Simulation of Light</u> <u>Detection in LAr TPCs, Stephen Menary</u>

"Fast" Simulation of optical photons

Using Geant4 and Opticks to simulate Liquid Argon TPCs, Hans Wenzel Hybrid CPU+GPU "Full" Simulation

Neutrino/Dark Matter Challenges

Overall CPU needs lower than LHC, but some specific challenges such as optical photons

Three axes to meet challenges

1. Modernize and optimize "Full" Geant4 toolkit

- Inc. code architecture to help items 2 and 3
- E.g. Task-based parallelism released in v10.7.0

2. Trade precision for performance with "Fast" methods

- E.g. Parameterization, Machine Learning, Biasing
- "Full" used to fit/train/validate "Fast"
- Ensure seamless integration with "Full" Geant4

3. R&D on algorithms and data structures for radiation transport on new architectures

- Not a simple "port X to GPU" problem!
- ExCALIBUR-HEP and SwiftHEP's prime area of work on simulation

Evolution Strategy

Geant4 Task Force for R&D
HSF Detector Simulation WG

Simulation in ExCALIBUR-HEP

- ExCALIBUR-HEP: 15 month project since May 1st 2020 in UK funded under <u>UKRI Excalibur High Priority Use Cases Phase 1</u>
- Work package on simulation, focussing on use of GPUs for EM Physics (typically highest CPU consumer)
- Two lines of investigation:
 - Secondary generation/management, understanding where/how to avoid divergences, Host/GPU transfer
 - Contribute to investigations on applicability of RT methods to charged particle transport
- Strong overlap with Portability Work Package (oneAPI, Alpaka, etc)

Global Picture

- Links and collaboration established with other R&D efforts to share ideas and avoid reinvention/deadends whilst allowing rapid prototyping and independent goals
- AdePT Project (CERN-SFT)
 - https://github.com/apt-sim
- Celeritas Project (ECP: ORNL, FNAL, Argonne, LBL)
 - <u>https://github.com/celeritas-project</u>
- Regular working and strategy meetings between projects
 - Also HSF and Geant4 workshops and meetings

AdePT

- See <u>Andrei Gheata's HSF/WLCG presentation</u> for full overview
- Demonstrate realistic EM shower simulation workflow on GPU
 - Start with a basic "Fisher-Price" like workflow demonstrator
 - Single particle type carrying minimal state, two processes (energy loss and secondary generation), energy deposits per cell as output, dynamic track population
 - Develop basic framework controlling a dynamic track workflow
- Evolve as $e+/e-/\gamma$ simulator in simple calorimeter setup
 - Magnetic field
 - VecGeom-based transport manager as first implementation
 - Gradually evolved physics processes to simulate EM showers
 - Simple "hits" as output, transferred to host
- Maintain CPU compatibility for the entire simulation
 - Correctness validation, performance analysis, reference baseline

AdePT: Bootstrapping

- Basic Host/Device utilities
 - Data structures, examples
 - Discussion/advice from LHCb Allen project on portability
- Study refactor of stepping loop into sequence of kernels
 - Move from: "list of actions to do for a track" to "list of tracks doing the same action"
 - Partially mitigate kernel synchronization overheads and thread divergence by overlapping stepping loop execution in multiple streams
 - Partially mitigate memory latency issues by coalescing accesses for reused state data

AdePT: Compute Workflow

Workflow organisation:

- Pre-allocate data on device: constant data, buffers for state (tracks) and output (hits) data
- Fill tracks from host, start stepping loop
 - Manage dynamically selections for the "next" kernel
 - Manage dynamically holes produced by killed tracks
- Fill output "hits"
- Copy "hits" to host

Device memory

7

Celeritas

- See <u>Seth Johnson's HSF/WLCG presentation</u> for full overview
- Deliver a GPU-accelerated particle transport application for HEP detector simulations
- Efficiently use leadership class hardware (GPUs) to increase particle tracking throughput with concurrent improvements in I/O and post- processing analysis
- Use Celeritas to offload EM physics in a standard Geant4-constructed application
- Use Celeritas as part of a broader LHC workflow for complete detector simulation
- Combinations of both approaches should be possible

Celeritas: Ongoing Work

Infrastructure

- Cohesive framework (GitHub wiki)
- Import GPU algorithms from Shift GPU code

Physics

- Leverage Geant4 physics implementations and documentation
- Export preprocessed Geant4 data where possible

Geometry

- Interface with VecGeom CUDA library
- Links established with VecGeom and NVidia

Celeritas: CPU/GPU Data, Portability

- Kernel code is separate from memory management and memory layout
 - Enables development, testing, and debugging on CPU
 - Allows isolated experimentation with data layouts to optimize GPU performance
 - Could enable (for example) Kokkos data management
- Kernels are plain C++ with annotations
 - Macros to enable CUDA device code, extensible to HIP and other performance abstraction layers
 - Runtime initialization code is host-only

Celeritas: "Acceleritas" Mini-app

- Collaboration between Celeritas and ExCALIBUR-HEP
 - Develop a Geant4 application using the new tasking system to demonstrate offload of tracks to a GPU for further processing
 - <u>https://github.com/celeritas-project/acceleritas</u>
- Similar to Opticks workflow for optical photons
- Provides a testbed for performance and physics validation in a hybrid system
- AdePT will also use it for cross-project comparisons

ExCALIBUR-HEP engagement activities

- Apart from AdePT/Celeritas links, other engagements and opportunities have been enabled
 - Davide Costanzo will take over from John Allison as STFC representative on Geant4 Oversight Board
 - Ben Morgan co-convener in HSF Detector Simulation WG for 2021
 - Building contacts with Lattice QCD community, including joint ExCALIBUR-HEP/ExaLat Data Parallel School (See tomorrow's talks)
- ExCALIBUR cross-cutting themes activity
 - Proposal on "computational geometrical modelling and simulation of particle and nuclear radiation"
 - Re-establish links with Medical, Bio-, Space, Nuclear, Industry fields using Geant4 and other codes in this area
 - Facilitate exchange of ideas, including training
 - Develop common applications to run on modern HPCs and investing in skilled RSEs to develop these applications

Simulation in SwiftHEP

1. Build on R&D from ExCALIBUR-HEP on algorithms for EM Physics on GPU

- Continue and strengthen collaboration with AdePT and Celeritas projects
- Extend "Acceleritas" example to fully demonstrate, profile and validate hybrid CPU/GPU Geant4 application
- 2. Contribute to development of example application using Geant4+Opticks for hybrid CPU/GPU optical photon simulation
 - In collaboration with FNAL and Geant4 R&D Task Force
 - Build UK links with, and expertise in, Opticks

Summary

- Much activity on detector simulation since ECHEP Edinburgh meeting, despite the challenges of 2020!
- ExCALIBUR-HEP has built strong links with global R&D efforts on detector simulation on GPUs
 - Working towards demonstrator applications for EM physics in 2021
 - Hope to build broader UK community: cross-cutting activity proposal
- SwiftHEP will continue these efforts and extend them to cover hybrid CPU/GPU simulations of optical photons
- Encourage all UK users/developers of detector simulation to contribute ideas, experience, developments to community:
 - HSF Simulation Working Group Meetings
 - Geant4 Task Force for R&D Meetings