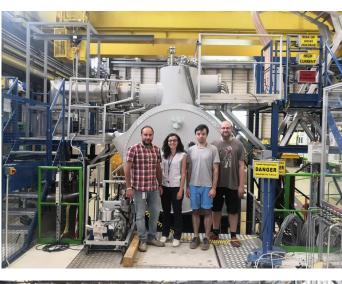


Testing of SuperFRS magnets in B180 -Update on the CERN/GSI Collaboration

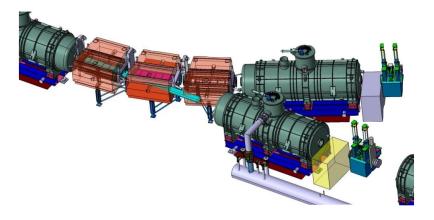

Stephan Russenschuck for the testing team, and with special thanks to Germana Riddone and Antonella Chuichiolo for their input

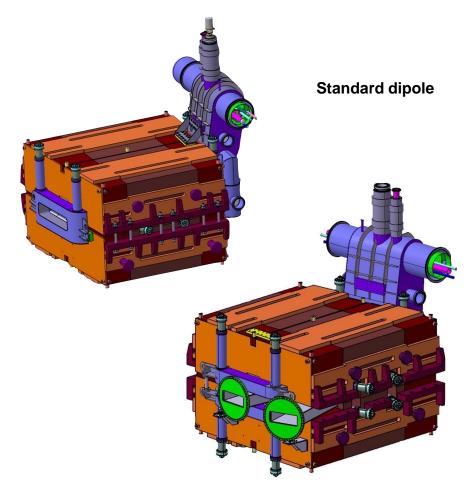
19.11.2020

Overview

- Planning and organizational matters
- ➔ A few highlight from operation
- Results from magnetic measurements
- ➔ Next steps
- ➔ Resources
- Points needing attention

Testing @ CERN, History





Dipole magnets

- → Large aperture, 340 mm × 140 mm
- → Weight: 60 tons
- → L = 15.4 H, E = 450 kJ, I = 245 A
- ➔ Forced-flow cooling with 20x10 mm² tubes (heat-pipe thermosyphon)
- ➔ Warm iron yoke
- → 24 dipole magnets (11 types of different bending angles)

Branching dipole

Elytt, CEA design, FAIR-China group

Multiplets

- → Large aperture ø 380 mm
- → Helium bath cooled (cold iron yoke, 4.5 K)
- ➔ Super-ferric, 1.2-m-long yoke
- → L = 43 H, E = 950 kJ, I = 300 A
- ➔ Long and short quadrupoles + sextupoles, steerers, octupoles
- → 30 (+ 2 spares) multiplets
- → 25 60 tons
- → max. 7 m

Short multiplet (quad + sextupole)

Long multiplet (max. 9 magnets)

Delivery to CERN 23.11.2020

ASG, CIEMAT design, Dubna

Multiplet configurations

- Combination of
 - long quadrupole magnet
 - short quadrupole magnets
 - sextupole magnets
 - steering dipole magnets
 - octuple magnets
- ➔ Positioning order in the cryostat
- → 32 multiplets 19 types

The test facility must be compatible with all 30 types of magnets: 11 types of dipoles, 19 types of multiplets. In total 56 assemblies.

186 magnetic circuits

					Cold	mass cor	itents						Ту
Upst	ream	-	-	-	-	8	-	-	-	-	Downs	tream	
			ST		LQ		LQ		ST				A
			0.50	0.30	1.20	0.40	1.20	0.30	0.50				
				LQ		LQ		LQ					В
				1.20	0.40	1.20	0.40	1.20					
				LQ		LQ		LQ					В
				1.20	0.40	1.20	0.40	1.20					
				SE	0.40		0.40	1.20					c
						SQ+OC							
				0.50	0.25	0.80							
				SE		LQ							D
				0.50	0.25	1.20							
						LQ		SE					E
						1.20	0.25	0.50					
				SE		LQ							D
				0.50	0.25	1.20							
						LQ		SE					F
						1.20	0.25	0.50					
							0.25	SE					F
						SQ+OC							
						0.80	0.25	0.50					
					ST		SE						G
					0.50	0.25	0.50						
SE		SQ+OC		ST		LQ		Filler		SQ+OC			н
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
		SQ+OC		Filler		LQ		Filler		SQ+OC		SE	1
		0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80	0.25	0.50	
SE		SQ+OC		Filler		LQ		SE		SQ+OC		SE	J
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80	0.25	0.50	
0.50	0.25	SO+OC	0.25	SE	0.2.5	LO	0.25	ST	0.2.5	SQ+OC	0.2.5	SE	к
			0.25		0.05		0.25		0.25		0.25		
		0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80	0.25	0.50	
SE		SQ+OC		ST		LQ		SE		SQ+OC			L
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
		SQ+OC		SE		LQ		Filler		SQ+OC		SE	N
		0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80	0.25	0.50	
SE		SO+OC		Filler		LQ		SE		SO+OC			N
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
SE		SO+OC		SE		LQ		ST		SO+OC		SE	C
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80	0.25	0.50	
	0.25	_	0.25	ST	0.25	LQ	0.25	Filler	0.25	SQ+OC	0.25	0.50	н
SE 0.50	0.25	SQ+OC 0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
0.50	0.25		0.25		0.25		0.25		0.25				
		SQ+OC		Filler		LQ		ST		SQ+OC			P
		0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
SE		SQ+OC		Filler		LQ		SE		SQ+OC			N
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
		SQ+OC		SE		LQ		Filler		SQ+OC		SE	N
		0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80	0.25	0.50	
SE		SQ+OC		Filler		LQ		SE		SQ+OC			N
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
SE	0.2.5	SQ+OC	0.20	SE	0.2.0	LQ	0.20	ST	0.2.5	SQ+OC		SE	c
	0.35		0.35		0.35		0.35		0.25		0.35		C
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80	0.25	0.50	
SE		SQ+OC		ST		LQ		Filler		SQ+OC			н
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
		SQ		Filler		LQ		Filler		SQ			Q
		0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
SE		SQ+OC		Filler		LQ		Filler		SQ+OC			R
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
SE		SQ+OC		SE		LQ		ST		SQ+OC		SE	c
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80	0.25	0.50	
SE	0.25	SQ+OC	0.23	0.50 ST	0.25	LQ	0.25	Filler	0.23	SQ+OC	0.25	0.50	н
	0		0.77		0.77		0.77		0				H
0.50	0.25	0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
		SQ+OC		Filler		LQ		Filler		SQ+OC			C
		0.80	0.25	0.50	0.25	1.20	0.25	0.50	0.25	0.80			
					SQ+OC		SQ+OC						S
					0.80	0.25	0.80						
				SE		LQ							D
				0.50	0.25	1.20							
		SO+OC		SE	0.2.5	LQ		ST		SQ+OC			Т

- CERN prepares and maintains the test facility (test-facility management)
 - \checkmark guarantees the safety and functionally of the facility
 - ✓ contributes 1.4 FTEs and organizes the Field Support Units (FSU)
 - ✓ supports GSI activities and trains personnel
 - ✓ provides standard tools, offices and IT network
 - ✓ covers energy cost
- → GSI@CERN executes the magnet testing and magnetic measurements
 - ✓ deploys 4 FTEs to work at CERN (as COAS)
 - $\checkmark\,$ defines tests plan and procedures
 - ✓ gives support for operation, upgrade and maintenance of the interfaces
 - ✓ bears the operation costs (mainly cryogenics and handling)
 - ✓ bears the cost of FSU (20 person years, 4 per year)
 - ✓ In 2020 (and 2021) still better served with students

CERN Test facility

3 benches (one commissioned, second ongoing)

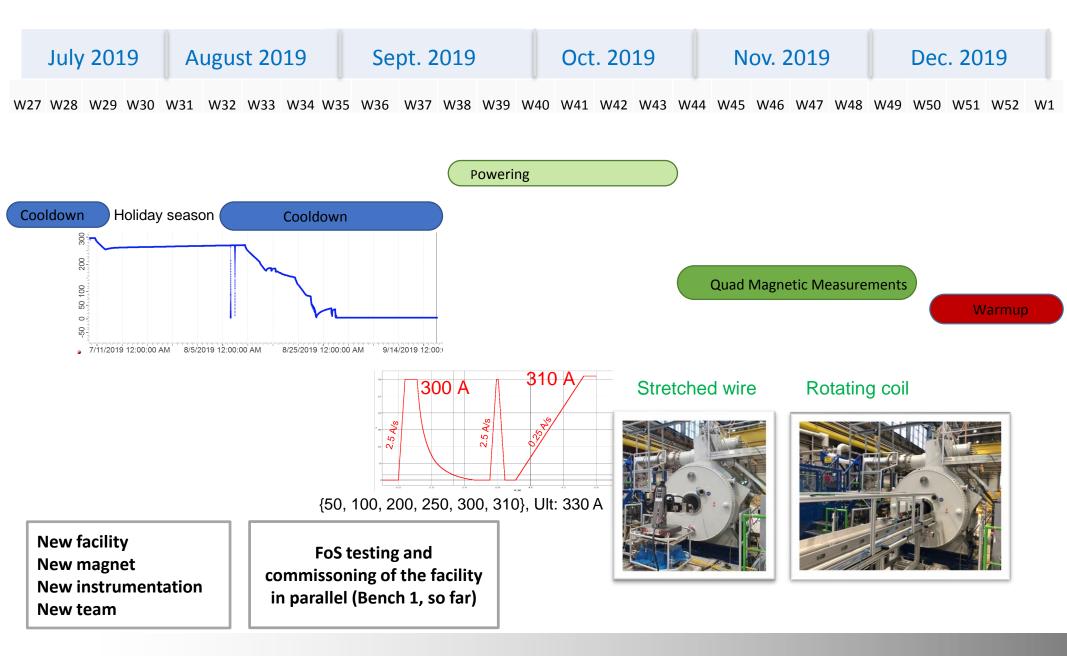
3 main cryogenic sub-systems

 $3 \times \pm 500 \text{ A}, \pm 120 \text{ V}$ (LHC-type) for the main circuits + EE system with 2.8 Ohm resistance for the quadrupoles, $6 \times \pm 600 \text{ A}$ $\pm 40 \text{ V}$ for the corrector circuits, 9 load switches, interlocked (2 out of 9 commissioned).

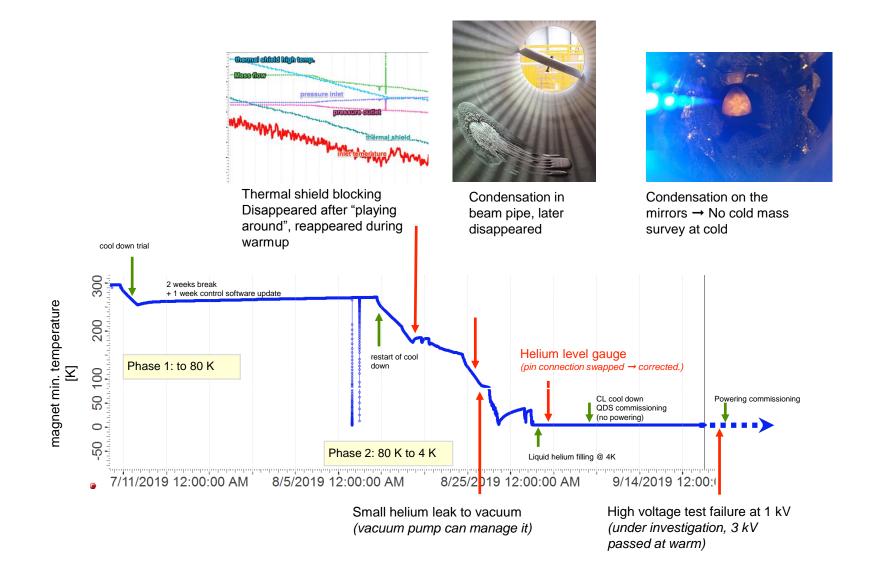
9 Power converters, 3 with energy extraction

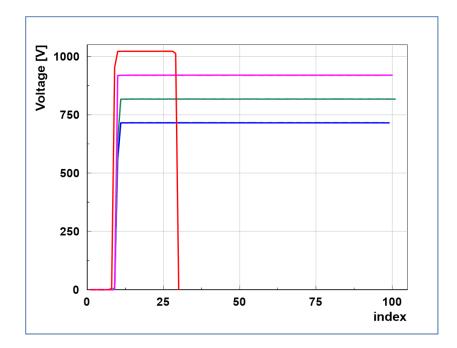
Load switches

Cryogenic plant



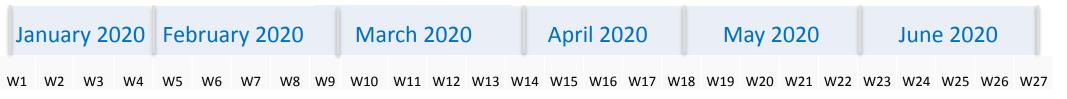
UQDS

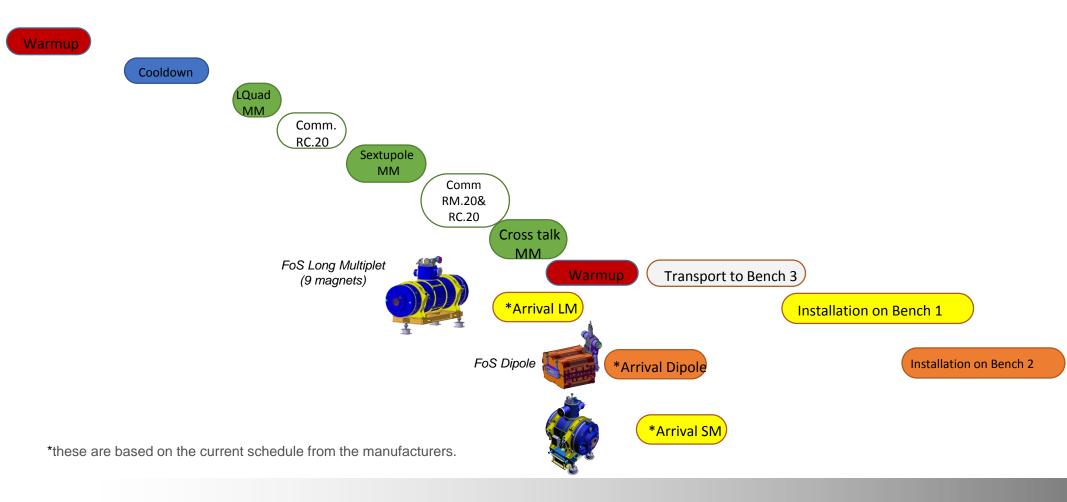

3x3 UQDS units (new LHC baseline) for magnet protection



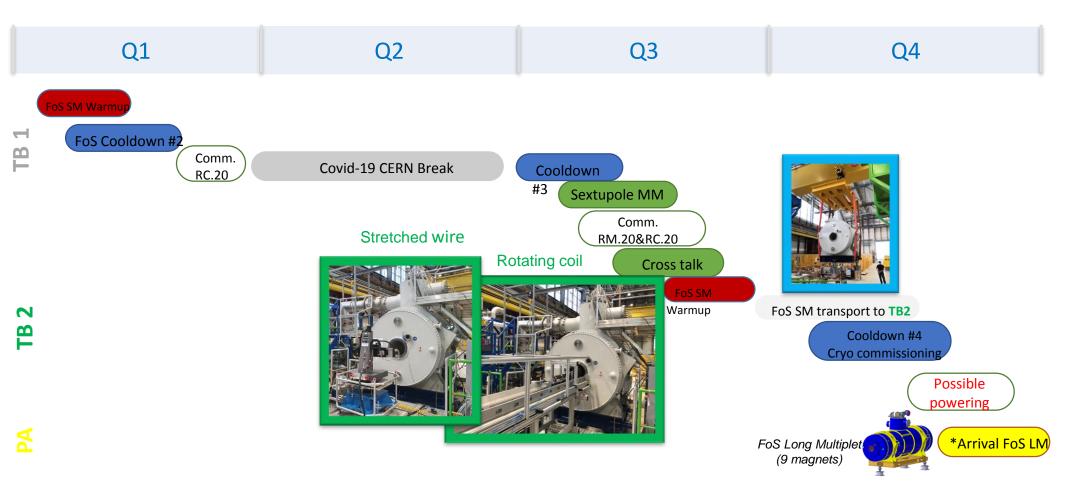
→ 10. July – 3-week break – 9. August 2019

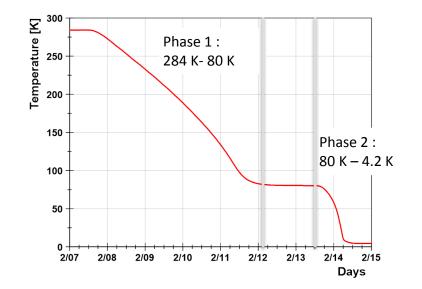
High Voltage Test at 4.5 K





- Quadrupole to ground (warm) @ 3 kV -> o.k.
- Sextuple to ground @ 200 V -> OK
- Quadrupole to ground @ 1000 V
- -> not o.k. at 1.1 bar LHe vessel pressure
- -> o.k. at 1.25 bar LHe vessel pressure
- No fault between sextuple and quadrupole
- **Possible fault location**: voltage taps at the cold terminal of a current lead


→ Quadrupole current limited to 310 A, nominal 300 A, ultimate 330 A



Main Achievements – Test results (1)

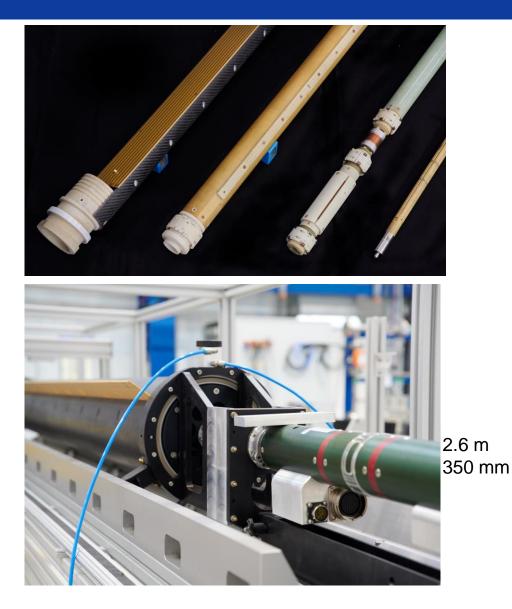
- Cooldown within 40 K gradient over cold mass: duration ~7 days
- HV test at cold on Long Quadrupole passed at 1 kV and not at 1.5 kV
- Possible leakage on the Thermal Shield pipes (investigation on going on TB2)
- Leakage on current leads (reparation under discussion)
- Heat loads higher than expected: dedicated studies will be carried out on TB2 closing the holes (transport restraints and view ports) MLI plankets

B180 SC magnet test facility - Progress meeeting I Tuesday 24 Nov 2020, 09:00 → 11:00 Europe/Zurich									
Videoconferen Rooi	B180 SC magnet test facility - Progress meeting	Join 🗸							
09:00 → 09:10	Presentation of the agenda and aim of the meeting Speakers: Dr Germana Riddone (CERN), Stephan Russenschuck (CERN)	© 10m							
09:10 → 09:25	Summary of activities in 2020 Speaker: Antonella Chiuchiolo (GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE))	© 15m							
09:25 → 09:35	Cryogenic system: status, issues and next steps Speaker: Thierry Dupont (CERN)	© 10m							
09:35 → 09:50	GSI control software maintenance and interface to TE-CRG: status, issues and next steps Speakers: Matthias Michels (GSI - Helmholtzzentrum für Schwerionenforschung), Thomas Barbe (CERN)	© 15m							
09:50 → 10:00	Quench protection system: status, issues and next steps Speaker: Daniel Calcoen (CERN)	© 10m							
10:00 → 10:10	Magnetic measurements: status, issues and next steps Speaker: Mr Pawel Kosek (GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE))	© 10m							
10:10 → 10:25	Power converters: status, issues and next steps Speakers: Emilien Coulot (CERN), Hugues Thiesen (CERN)	© 15m							
10:25 → 10:35	Jumper interconnection and disconnection Speaker: Gilles Favre (CERN)	③ 10m							
10:35 → 10:50	Summary of activities in 2021 Speaker: Antonella Chiuchiolo (GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE))	© 15m							
10:45 → 10:55	Conclusions	© 10m							

CERN

➔ FoS

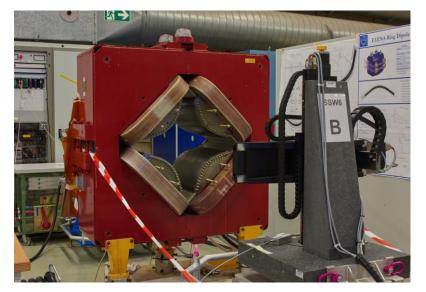
- Time is available to measure both integrated and local field distribution and homogeneity
- Each magnet must be measured with two systems (cross-calibration)
 - Dipoles: Stretched wire, moving fluxmeter, Hall-mapper
 - Multiplets: Stretched wire, rotating coils (+ longitudinal scanning)


Series

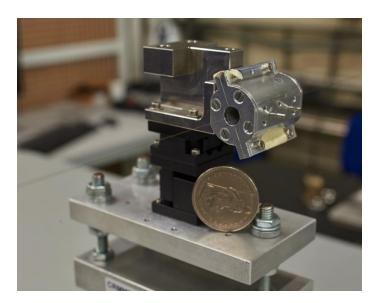

- Check magnet to magnet reproducibility
 - Stretched wire (coil and moving fluxmeter only if largely divergent)
 - Overall test plan required MM requires MM in less than 10 days, thus:
 - No contingency for tracing manufacturing errors.
 - No corrective actions for the magnet (shimming) is requested <u>https://edms.cern.ch/document/1416580</u>, but this may change.

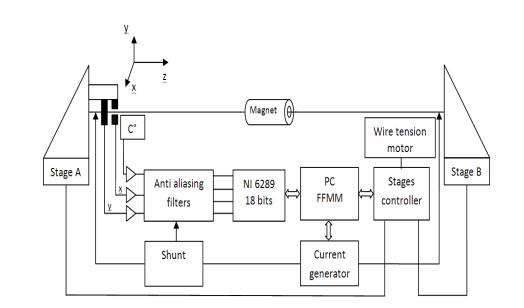
FAIR measurement requests have triggered MM R&D with nice synergies

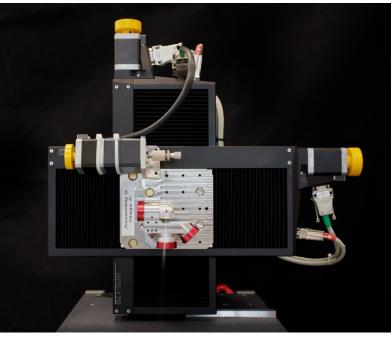
Rotating Coil Systems



Carbon-fibre shaft, PCB induction-coil design qualified (also for HL-LHC), surface calibration can/must rely on manufacturing tolerances

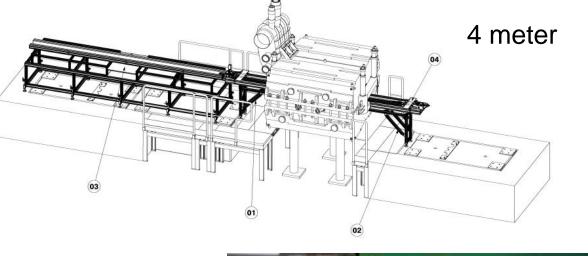

Stretched-Wire System



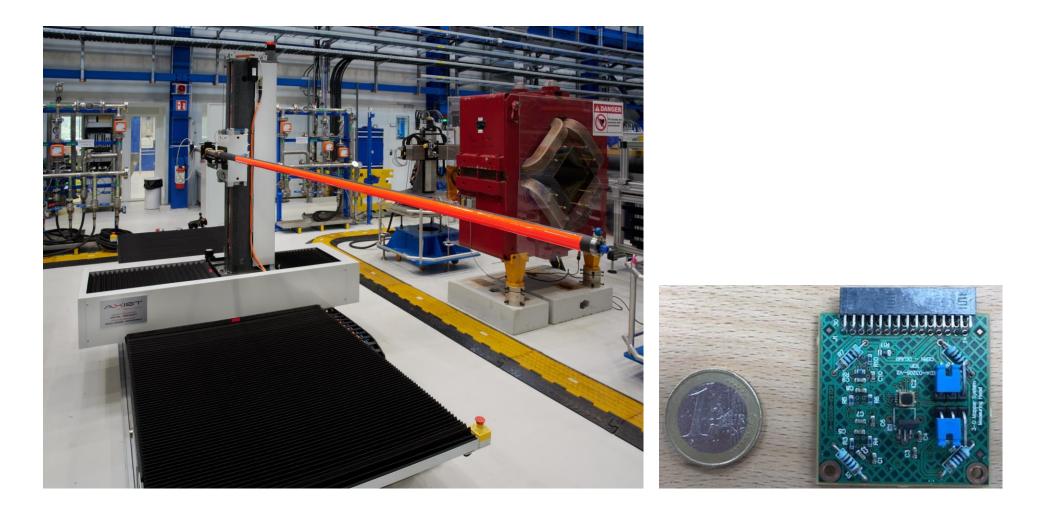


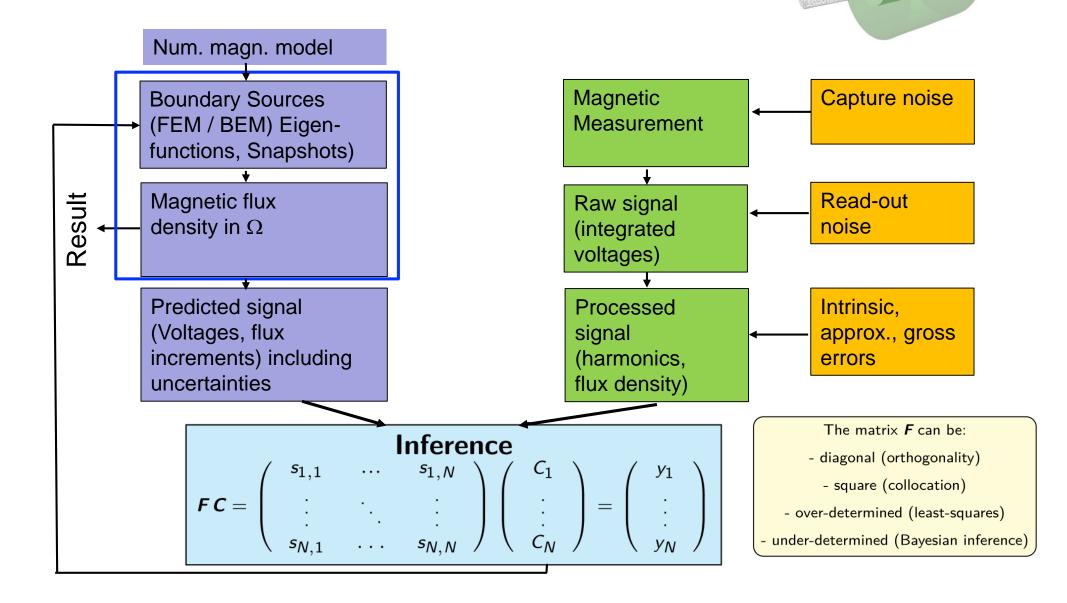
New system and techniques for large apertures

400 mm stroke



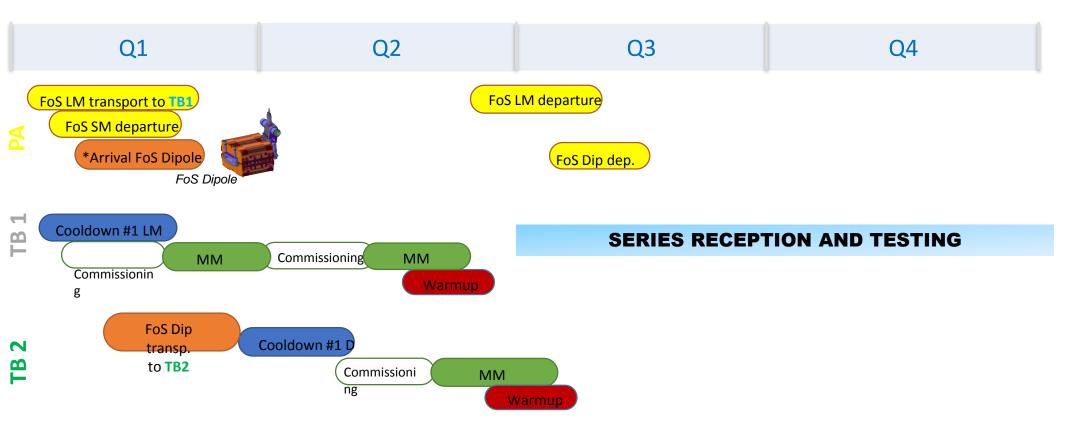
Moving Fluxmeter



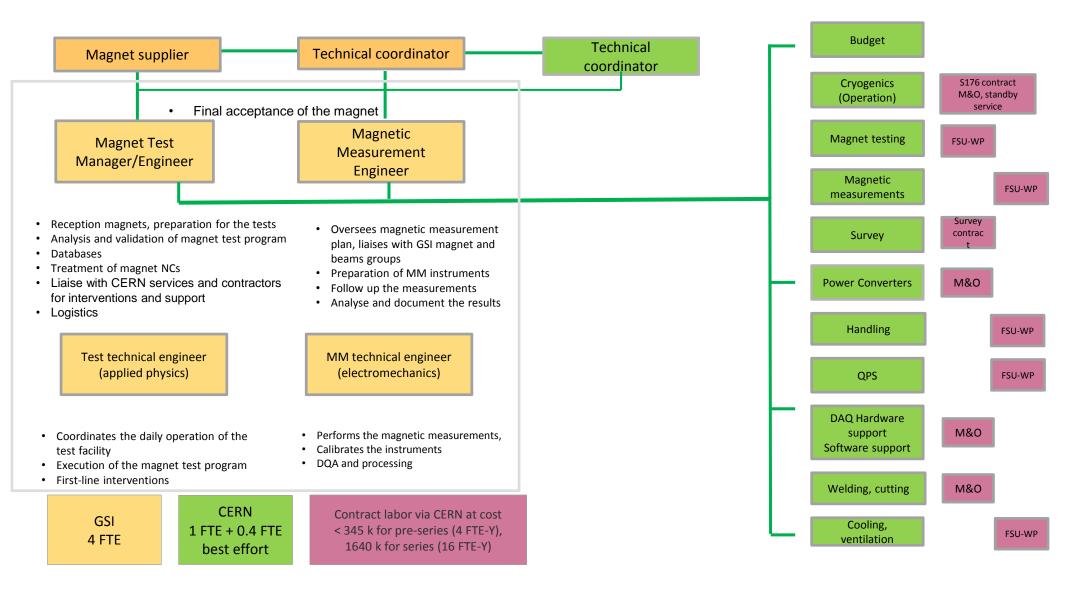

Scanning of large volumes Mapping of Bld. 311 calibration magnets Post-processing based on Boundary-Element techniques (field description)

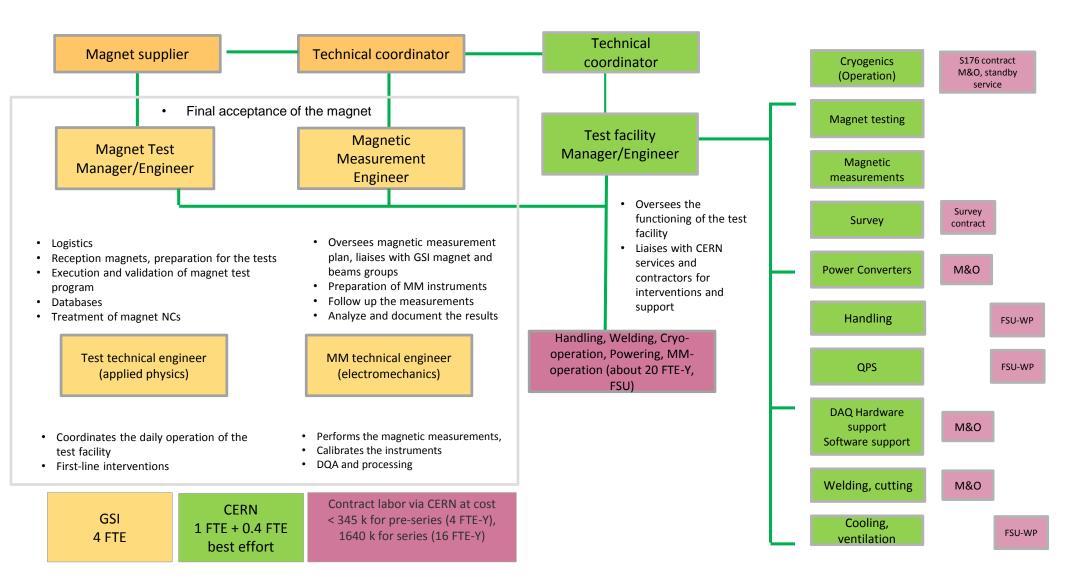
Hall Mapper

Calibration (Hall linearity, planar effect, drift) Vibration damping Postprocessing based on BEM (sensor fusion)



CERN


- Deployment of the GSI personnel (4 FTEs) was completed by beginning of February 2019.
- ➔ First short multiplet arrived in Feb 2019. Therefore no training of personnel on the SM18 test station (as originally foreseen).
- → Transport required additional information (center of gravity).
- Non-conformities on magnet and installation (jumper/support posts), adaptations, additional tools and equipment (pumping group) needed. The path of communication to the magnet supplier is established.
- → Maintenance of GSI Instrumentation Panel and Electrical Cabinet (DAQ for pressure, level and flow sensors, control and power supply for current-lead heaters). No remote access for GSI.
- ➔ But: Nothing is on the critical path. Delivery of the FoS long multiplet and FoS dipole planned for 04.2020


Organizational structure (status 01.2020)

Organizational structure (status 08.2020)

New test station, new systems, new magnet, new GSI@CERN team, CERN resources spread over 13 sections, non-conformities on magnet: Successful commissioning of bench 1, powering to nominal, MM with high-precision

- ➔ So far, most cost-efficient operation, no dedicated FSU work-packages, but this will change (experience with FoS long multiplet and dipole needed to establish a final resource-loaded planning). Series measurement (Q3.2020?) will require a CERN test-facility manager to liaise with CERN experts and coordinate the FSU workpackages.
- Commissioning of powering circuits (2-9) still required (FoS long multiplet). Commissioning of the (white and green) benches still required.
- Non-negligible lead time for registration and (safety) training (COAS) has to be considered. Magnet suppliers and their contractors need work-orders to be able to intervene on the magnets. Registration of ASG and Elytt personnel as PROJ (External for projects) for packing, solving of non-conformities.

- In view of 21 different types of multiplets, GSI@CERN team may require a fifth person responsible for the configurations (interlock system), instrumentation, parameter settings for quench detection, polarities, HV, LV test interfaces, among others.
- Decisions and guidelines are required for storing test and measurement data (Carpenter, Wiki, MTF, Magnetic measurement request).
- → The analysis team must be established, taking care of inverse-field computation and interpretation of quench detection signals. Working group on beam optics (post processing of measurement data and tracking studies) must be established.
- Safe (fenced) storage space for MM equipment, in particular for the moving fluxmeter needed (yellow-fenced area). No buffer zone for magnets.