Witness radius matching revisited

John Farmer

November 19, 2020

Matched witness

Ideally, the witness beam should drive a blowout (bubble)

The matching condition is then

$$\sigma_x' = \left(\frac{2c^2 \epsilon_{x,0}^*}{\gamma \omega_p^2}\right)^{1/4},\tag{1}$$

Defining the core

 Q_E is the fraction of the beam within a $\frac{3}{2}$ 1% energy range.

 Q_t is the fraction of the beam within the 4D hypersphere of radius $2\sigma_{
m matched}$

$$\frac{x^2}{\sigma_x'^2} + \frac{y^2}{\sigma_y'^2} + \frac{p_x^2}{\sigma_{p_x}'^2} + \frac{p_y^2}{\sigma_{p_y}'^2} < 4$$
 (2)

(normalised to the 0.594 for a matched Gaussian beam)

Q is the fraction of the beam satisfying both

Beamloading

Correct phase is important to maximize the beam quality

Beamloading

Correct phase is important to maximize the beam quality

Beamloading

Correct phase is important to maximize the beam quality

Beamloading depends (weakly) on witness radius, so comparison limited to Q_t for simple 1D scan.

Physics

Higher emittance witness gives higher quality acceleration (Q_t) for $\sigma > \sigma_{\mathrm{matched}}$

Incomplete blowout? (smaller focussing field)

Physics

Higher emittance witness gives higher quality acceleration (Q_t) for $\sigma > \sigma_{
m matched}$

Consistent with incomplete/slow blowout.

Larger beams drive smaller wake, improves matching for larger beams.

Conclusion

Good news?

Large range of radii give comparable acceleration quality (Q_t) .

BUT complicated, needs simulations.