Betatron motion of electrons with a transverse offset

Martin S. Weidl
(Max Planck Institute for Plasma Physics, Garching)
Martin.Weidl@ipp.mpg.de

AWAKE Run 2 meeting 19th November 2020

- Quasistatic qv3d simulation with $n_e = 2.0 \cdot 10^{14}$ cm⁻³
- Monoenergetic proton **driver** with 48nC, γ =426.0, and transverse 1/e length **1.41\sigma**(d)=**269** μ m; **not evolved** throughout simulation
- Witness beam of electrons injected with 102pC, γ =323.0, and normalised emittance ε =12.0mm·mrad (Livio's low-density scenario)
- Witness beam trails behind driver by Δ (centroid to centroid), displaced **off-axis** by Δ y (< 1/e width of driver) [cf. Olsen et al., PRAB 2018]

Transverse offset: 113 micrometres

Transverse cut through
Head of witness
Centroid of witness

Transverse offset: 11.3 micrometres

Transverse cut through

Head of witness

Centroid of witness

Large-amplitude betatron oscillations

Time between (n-1)'th and n'th maximum 1400 1st peak 2nd peak 1200 3rd peak 4th peak 5th peak 1000 last peak 800 $\Delta T \, \omega_p$ 600 400 200 1.0 1.2 1.4 1.6 1.8 2.0 ξk_p

Our focussing device is co-moving with the beam, and the betatron frequency changes along the beam.

No self-fields: very low-charge witness

Delaying the witness further

