Evidence for $H \rightarrow \ell^+\ell^-\gamma$ and searches for new physics involving photons with ATLAS

Anthony Morley
On behalf of the ATLAS collaboration
February 2nd 2021
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

- The force carrier you can literally see
Evidence for $H \rightarrow \ell^+ \ell^-$ and searches for new physics involving photons with ATLAS - Anthony Morley

Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

High mass $\gamma \gamma$ resonance

$H(\rightarrow \gamma \gamma)+\text{MET}$

$H \rightarrow \ell \ell \gamma$
Rough analysis procedure

Step 1

- Event and object selection, categorisation

Step 2

- Parameterisation of the final discriminate

Step 3

- Simultaneous fit to all categories via a likelihood
Background parameterisation

Step 2.1
- Create template for each contributing process

Step 2.2
- Add templates together to get a total background shape
- If needed: Smooth background to reduce stat. fluctuations

Step 2.3
- Parameterisation of the bkg. shape
- Estimate uncertainty associated with choice of the function
- Spurious Signal

Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley
• Resonances decaying to a pair of photons predicted by several BSM models

• Spin-0 and 2 search performed
 • Spin 0 (X)- narrow or large width resonance ($\Gamma_X / m_X = 10\%$)
 • Spin-2 (G*)- RS graviton $0.01 < k/M_{pl} < 0.1$

• Search for peak in the diphoton mass spectrum
Event selection

- Analysis selections targeting both Spin-0 and Spin-2
- Data recorded with diphoton triggers
 - $E_T(\gamma_1) > 35$ GeV, $E_T(\gamma_2) > 25$ GeV
- Final selection:
 - $E_T(\gamma_1) > 40$ GeV, $E_T(\gamma_2) > 30$ GeV
 - $|\eta(\gamma)| < 2.37$, excluding crack region
 - Tight Isolation and Tight Photon ID
 - Relative $E_T: E_T(\gamma_1)/m_{\gamma\gamma} > 0.3$, $E_T(\gamma_2)/m_{\gamma\gamma} > 0.25$
 - $m_{\gamma\gamma} > 150$ GeV
- Signal Eff.: 53% (Spin-0), 42% (spin-2) @ 1 TeV

Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley
Signal modelling

- Detector resolution effects: Double sided Crystal Ball (DSCB)
 - Linear parameterisation of DSCB as function of mass

- Resolution:
 - Spin 0/2 ~0.6% $m_{\gamma\gamma}$ @ 2TeV

- DSCB is convolved with signal line shape
 - Spin 0: relativistic Breit-Wigner
 - Spin 2: graviton line-shape

![Graph showing signal modelling results](image)
Evidence for $H \rightarrow \ell^+\ell^-\gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

Background modelling

- Background template
 - $\gamma\gamma$ MC based
 - $\gamma+$jet & jet+jet data driven

- Components added according to measured fraction ($\gamma\gamma=0.92$, $\gamma+$jet=0.08)
 - estimated with using a isolation and ID sideband decomposition (2x2D decomposition)

- Smooth background templates- Functional Decomposition
 - Reduces statistical fluctuations in template

- Select a parametric function:
 $$f_b(x; \{\alpha, \alpha_i\}) = (1 - x^{1/3})^a \cdot x^\alpha_0 + \alpha_1 \cdot \log(x)$$
 - Function able to accommodate all systematic variations

![Graph showing $dN/dm_{\gamma\gamma}$ and $\gamma\gamma$ fraction vs $m_{\gamma\gamma}$](image)
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

Dominant Systematic Uncertainties

- Signal yield
- Production mode
- Signal modeling
- Photon energy resolution
- Background model
- Bias on signal yield estimation from background mismodeling, quantified by the extracted signal yield when fitting the background template with S+B model.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>±1.7%</td>
</tr>
<tr>
<td>Photon identification</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Photon energy scale/resolution</td>
<td>negligible</td>
</tr>
<tr>
<td>Spin-0 production process*</td>
<td>± (7–3) %</td>
</tr>
<tr>
<td>Trigger</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Photon isolation</td>
<td>±1.5%</td>
</tr>
<tr>
<td>Pile-up reweighting*</td>
<td>± (2–0.2) %</td>
</tr>
<tr>
<td>Background model</td>
<td></td>
</tr>
<tr>
<td>Bias on signal yield estimation from S+B</td>
<td></td>
</tr>
<tr>
<td>model</td>
<td></td>
</tr>
</tbody>
</table>

Spurious signal, Spin-0:

- NWA: 114–0.04 events ($m_X = 160–2800$ GeV)
- $\Gamma_X/m_X = 2\%$: 107–0.14 events ($m_X = 400–2800$ GeV)
- $\Gamma_X/m_X = 6\%$: 223–0.38 events ($m_X = 400–2800$ GeV)
- $\Gamma_X/m_X = 10\%$: 437–0.50 events ($m_X = 400–2800$ GeV)

Spurious signal, Spin-2:

- $k/M_B = 0.01$: 4.71–0.04 events ($m_G = 500–2800$ GeV)
- $k/M_B = 0.05$: 19.0–0.09 events ($m_G = 500–2800$ GeV)
- $k/M_B = 0.1$: 31.2–0.20 events ($m_G = 500–2800$ GeV)

* mass-dependent
Full model and data

- A Likelihood is constructed from signal and background parametrisation
- Parametric function accurately models the shape
- Search new resonance by scanning parameter \((m_X, \Gamma_X)/(m_{G*}, k/M_{Pl})\)
- Mass scan range varies depending on the model
• Largest deviation: 3.3σ (local), 1.3σ (global) at $m_X = 684$ GeV
• Upper limits on the fiducial cross-section with NWA: 12.5 fb -> 0.03 fb.
Evidence for $H \rightarrow \ell^+\ell^-\gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

- Largest deviation: 3.3σ (local), 1.36σ (global) at $m_X = 684$ GeV
- Upper limits on the total cross-section with $k/M_{Pl}=0.1$: 3.2 fb $\rightarrow 0.04$ fb.
The Higgs in 2021

- Entering the precision era for Higgs physics
- Higgs properties
- Differential XS measurement
- Searches for rare processes

Evidence for $H \rightarrow \ell^+\ell^-\gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley
H(→γγ)+MET : Dark matter?

- Strong astrophysical evidence for Dark Matter
- Dark matter provides a clear empirical direction for physics beyond the Standard Model.
- We make the assumption that dark matter has particle-like nature
Dark matter searches at the LHC

- Searches for Dark matter at the LHC have taken on many forms
- Some of the most versatile are the Mono-X (X = jet, W, Z, γ)
 - X is produced from ISR
 - SM particle also provides something to trigger on
Evidence for $H \rightarrow \ell^+ \ell^− γ$ and searches for new physics involving photons with ATLAS - Anthony Morley
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

- The Higgs boson is generally assumed to couple to a massive mediator in the model
- ISR Higgs boson production cross-section is negligible
- In this search $H(\rightarrow \gamma \gamma) + E_T^{\text{miss}}$ three models are tested:

 - Z'_B
 - $Z'_{2\text{HDM}}$
 - $2\text{HDM}+a$
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

Event selection

- **Data recorded with diphoton triggers**
 - $p_T(\gamma_1) > 35$ GeV, $p_T(\gamma_2) > 25$ GeV

- **Photons**
 - $p_T(\gamma) > 25$ GeV
 - $|\eta(\gamma)| < 2.37$, excluding crack region
 - Tight Isolation and Tight Photon ID
 - Relative E_T: $E_T(\gamma_1)/m_{\gamma\gamma} > 0.35$, $E_T(\gamma_2)/m_{\gamma\gamma} > 0.25$

- **Jets**: AntiKt(R=0.4) Particle flow
 - $p_T(\text{jet}) > 25$ GeV, $|\eta(\text{jet})| < 4.4$

- **Electron and Muons**
 - $p_T(\gamma) > 10$ GeV
 - $|\eta(\gamma)| < 2.47$

- **Final Requirements**
 - 2 photons, No leptons, $E_T^{\text{miss}} > 90$ GeV, $\Delta E_T^{\text{miss}} < 30$ GeV
 - 105 GeV $< m_{\gamma\gamma} < 160$ GeV
 - Acceptance varies significantly depending on the model

Diagram Description

- **Data**
 - SM Higgs Boson
 - $V\gamma$
 - $V\gamma$

- **Models**
 - $Z2HDM$, $m_z = 800$ GeV, $m_A = 500$ GeV
 - ZB, $m_z = 1000$ GeV, $m_z = 50$ GeV
 - $2HDM+a$, $\tan\beta=1$, $\sin\theta=0.7$, $m_A = 300$ GeV, $m_h = 250$ GeV
 - $2HDM+a$, $\tan\beta=1$, $\sin\theta=0.35$, $m_A = 600$ GeV, $m_h = 200$ GeV
Event categorisation

- Events are then divided into 4 signal regions based on E_T^{miss} and BDT score
- A BDT trained using $p_T(\gamma\gamma)$ and MET Significance as inputs
 - Signal: a single 2HDM+a signal point
 - Background: control region with loose or non-isolated photons
 - Significant gains in expected sensitivity over solely cut based analysis
Event categorisation

- BDT cuts out rather particular regions of phase space

<table>
<thead>
<tr>
<th>Category</th>
<th>E_T^{miss} cut</th>
<th>BDT score cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>High E_T^{miss} BDT tight</td>
<td>$E_T^{\text{miss}} > 150$ GeV</td>
<td>$0.950 < $BDT score < 1</td>
</tr>
<tr>
<td>High E_T^{miss} BDT loose</td>
<td>$E_T^{\text{miss}} > 150$ GeV</td>
<td>$0.694 < $BDT score < 0.950</td>
</tr>
<tr>
<td>Low E_T^{miss} BDT tight</td>
<td>$E_T^{\text{miss}} < 150$ GeV</td>
<td>$0.864 < $BDT score < 1</td>
</tr>
<tr>
<td>Low E_T^{miss} BDT loose</td>
<td>$E_T^{\text{miss}} < 150$ GeV</td>
<td>$0.386 < $BDT score < 0.864</td>
</tr>
</tbody>
</table>
Signal and background modelling

- Final discriminate is the $m_{\gamma\gamma}$ spectrum.
- Signal & Resonant background (SM Higgs production)
 - DSCB is used to parameterise the shape
 - Parameterised separately for BSM and SM.
- Non-Resonant Background
 - $m_{\gamma\gamma}$ template constructed from:
 - $\gamma\gamma$-shape based on MC ($\gamma\gamma$, $\gamma\gamma+V\gamma$)
 - γ-jet shape data driven
 - Data driven purity estimate
 - using a isolation and ID sideband decomposition (2x2D decomposition)
 - $\gamma\gamma$, 80% γ-jet 18%, jet-jet 2%
 - Function selected that is able to parameterise the expected $m_{\gamma\gamma}$ spectrum
 - An exponential is used for all categories

<table>
<thead>
<tr>
<th>Category</th>
<th>$\Delta N_{\text{bkg model}}^{\text{sig}}$</th>
<th>$\Delta N_{\text{bkg model}}^{\text{sig}}/N_{\text{bkg}}^{\text{non-res.}}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>High E_T^{miss} BDT tight</td>
<td>0.54</td>
<td>6.8</td>
</tr>
<tr>
<td>High E_T^{miss} BDT loose</td>
<td>1.07</td>
<td>4.2</td>
</tr>
<tr>
<td>Low E_T^{miss} BDT tight</td>
<td>0.62</td>
<td>6.3</td>
</tr>
<tr>
<td>Low E_T^{miss} BDT loose</td>
<td>2.64</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Signals [%]</th>
<th>Backgrounds [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SM Higgs boson</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Vertex selection (inclusive cat.)</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Photon energy scale</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Photon energy resolution</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Photon identification efficiency</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Photon isolation efficiency</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>ATLFASTII simulation</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>E_T^{miss} reconstruction and jet uncertainty</td>
<td>2.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Pileup reweighting</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Signal efficiency interpolation</td>
<td>< 13</td>
<td>-</td>
</tr>
<tr>
<td>Non-resonant background modeling</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Theoretical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factorization and renormalization scale in migration</td>
<td>1.3</td>
<td>3.5</td>
</tr>
<tr>
<td>PDF+α_S in migration</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Multi-parton interactions, ISR/FSR, hadronization</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>$B(H \rightarrow \gamma\gamma)$</td>
<td>1.73</td>
<td>1.73</td>
</tr>
</tbody>
</table>
Results

- No excess w.r.t. total background

- Some SM Higgs background is expected
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS

- Limits on $m_{Z'B}$ 1150 GeV for light Dark matter candidates
- Improves limits $m_\chi < 2$ GeV
- Factor of 2 better w.r.t. previous publication

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

Limits at 95% CL

$\sin\theta = 0.3$, $g_q = 1/3$, $g_\chi = 1$

$h(\gamma\gamma) + E_T^{\text{miss}}, Z'_{B}$, Dirac DM
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS

- Complements other searches the limit $m_A \rightarrow m_a + m_h$
- Large portion of the possible mixings angles excluded for this benchmark point

ATLAS Preliminary

*Complements other searches the limit $m_A \rightarrow m_a + m_h$

Large portion of the possible mixings angles excluded for this benchmark point
- Very rare process
- Numerous processes contribute to the final state
- Diverse final state kinematics
 - Dedicated analyses for different regions of phase space.
- Some disagreement in literature in about the expected BR
- Used Pythia8 to estimate
 \[
 \mathcal{B}(H \rightarrow \ell\ell\gamma) \mid m_{\ell\ell}<30 \text{ GeV}:
 \]
 \[
 \mathcal{B}(H \rightarrow e\gamma) = 7.20 \times 10^{-5} \\
 \mathcal{B}(H \rightarrow \mu\gamma) = 3.42 \times 10^{-5}.
 \]
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

Previous measurements of $H \rightarrow \ell\ell\gamma$

- Run 1 and early Run 2 searches for $H \rightarrow \ell\ell\gamma$
 - all are statistically limited
 - all consistent with background only hypothesis

- Last year ATLAS published its results $H \rightarrow Z\gamma \rightarrow \ell\ell\gamma$:
 - $\mu_{Z\gamma} = 2.0 \pm 0.9$ (stat) $+0.4/-0.3$ (syst)

- Today our first result for $H \rightarrow \ell\ell\gamma$ for $m_{\ell\ell} < 30$ GeV

95% confidence level upper limit

- Observed 3.9
- Expected (no Higgs) 2.0

$H \rightarrow Z\gamma \rightarrow \ell\ell\gamma$

95% confidence level upper limit

- Observed 3.6
- Expected (no Higgs) 1.7
Detector Signature

- Due to the low mass of the dilepton pair they are often very collimated
- Limited spacial resolution of the detector
 - Merged electron + Photon / 2 electrons + Photon
 - Not an issue for muons
• Can’t rely on regular single leptons triggers alone
 • single-ℓ, 2ℓ, γ–ℓ, γγ, γ–2ℓ

• Efficiency with respect to final selection
 • Muon channels: 96.2%
 • Resolved electron categories: 96.5%
 • Merged electron categories: 99.8%
Merged Electron Identification

- Largely look like converted to ee pairs early expect:
 - $m_{ee} \neq 0$, opening angle $\neq 0$, \implies broader cluster

- Requires dedicated PID to ensure reasonable efficiency is maintained vs. angular separation.

- Cut based PID inputs:
 - Variables constructed from the tracks
 - Neutral vertex contracted from the 2 selected tracks
 - Cluster vertex and track matching requirement
 - Variables shower the EM shower shapes
 - Some of which are dependent on the properties of the tracks
 - Additional cuts are applied to reduce background from single electrons

![Graph showing merged ee ID efficiency]

\[\text{Simulation Preliminary} \]

\[\sqrt{s} = 13 \text{ TeV} \]

\[H \rightarrow \gamma^* \gamma \rightarrow ee\gamma \]
Merged electron: Efficiency measurements

- Use Z→llγ events to perform efficiency measurements
 - Consider only converted photons, with conversion radius <160mm to have an object similar to γ*

- Extract efficiency of Merged ID + a tight isolation requirement
 - Fit to the ℓℓγ mass spectrum, with Z→ℓℓγ signal shape from MC and Z+jet background from inverted ID/isolation control regions

- Scale factors cross-checked using electrons from Z→ee
 - with Smirnov transformation to make each individual PID variable look as expected
Merged electron: Calibration

- A merged electron (γ^*) looks like photon conversions treat them as such
- Calibrate γ^* as an early converted photon with radius 30mm
- The small differences taken as additional systematic uncertainty
Event selection

- Photons
 - $p_T > 20$ GeV
 - Tight ID
 - Loose Isolation

- Resolved Electrons:
 - $p_T > 4.5$ GeV
 - Medium ID
 - Loose isolation applied only to the leading e

- Merged Electrons
 - $p_T > 20$ GeV
 - Custom ID
 - Tight Isolation

- Muons:
 - $p_T > 3.0$ GeV
 - Medium ID
 - Track isolation applied only to leading μ

- Jets:
 - $p_T > 20$ GeV
 - AntiKt(R=0.4) Particle Flow

- Final selection:
 - Require event to have with 2 leptons and photon
 - $m_{\ell\ell} < 30$ GeV
 - Veto J/ψ and $Y(nS)$ mass range
 - 105 GeV $< m_{\ell\ell\gamma} < 160$ GeV
 - Relative p_T: $p_T(\ell\ell)/m_{\ell\ell}$ > 0.3, $p_T(\gamma)/m_{\ell\ell\gamma}$ > 0.3
 - Signal Efficiency: $\mu\mu\gamma \sim 28\%$, $ee\gamma \sim 14\%$
Categorisation

- For each signature 3 kinematic categories are created
 - VBF-enriched
 - 2 jets $p_T > 25$ GeV (>30 GeV if $|\eta_{\text{jet}}| > 2.5$)
 - $m_{jj} > 500$ GeV, $\Delta\eta_{jj} > 2.7$, $\Delta\eta_{\text{Zepp}} < 2.0$
 - $\Delta\phi(\ell\ell\gamma,jj) > 2.8$
 - $\Delta R(\text{obj},j) > 1.5$ for the leading 2 jets and obj = γ,ℓ_1,ℓ_2
 - High-p_T-Thrust
 - $!\text{VBF-enriched}$ & p_T-Thrust($\ell\ell\gamma) > 100$ GeV
 - Low-p_T-Thrust
 - Everything else

- Discriminating variables inspired by $H \rightarrow \gamma\gamma$ analysis (very similar signal topology)
Signal Modelling

- Analysis strategy: use a S+B fit to the $m_{\ell\ell\gamma}$ distribution in the range [110,160] GeV, in each category (simultaneous fit in all categories)
- Use a DSCB function to model the signal in each individual channel
 - Effective resolution between 1.6 and 2.2 GeV
- Highly suppressed resonant background from $H \rightarrow \gamma\gamma$ parametrised using the same functional form
 - Yield from MC based on measured $\sigma \times B(H \rightarrow \gamma\gamma)$ (Phys. Rev. D 98, 052005)
 - At most a few % of the expected signal in any category
Background modelling

- Background modelled using a parametric function
 - Function choice based on expected background shape

- Composition - Isolation Template method
 - Using isolation templates, derived in a region with inverted ID, and then normalised in the high-isolation tail

- Fraction of events with jets faking:
 - γ: 6–11% (category dependent)
 - μ: 4–15%
 - e: 2–27%
Background templates

- **Background Template:**
 - Use MC (LO Sherpa 2.2) \(\ell\ell\gamma\) to model the irreducible \(\ell\ell\gamma\) background
 - Reweight this generator-level sample to account for reconstruction-level effects
 - Obtain shapes for fake backgrounds in data control regions
 - Components added together with measured compositions
Background modelling

- Background function choice
 - S+B fit to expected background
 - Functions must model the expected background with a reasonable χ^2 probability
 - Functions with low bias and with low degrees of freedom are preferred

<table>
<thead>
<tr>
<th>Channel</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu\mu$ VBF-enriched</td>
<td>m^α</td>
</tr>
<tr>
<td>$\mu\mu$ High-p_T-Thr</td>
<td>m^α</td>
</tr>
<tr>
<td>$\mu\mu$ Low-p_T-Thr</td>
<td>$e^{\alpha m + \beta m \times m}$</td>
</tr>
<tr>
<td>Merged e VBF-enriched</td>
<td>m^α</td>
</tr>
<tr>
<td>Merged e High-p_T-Thr</td>
<td>m^α</td>
</tr>
<tr>
<td>Merged e Low-p_T-Thr</td>
<td>$e^{\alpha m + \beta m \times m}$</td>
</tr>
<tr>
<td>Resolved e VBF-enriched</td>
<td>$e^{\alpha m}$</td>
</tr>
<tr>
<td>Resolved e High-p_T-Thr</td>
<td>m^α</td>
</tr>
<tr>
<td>Resolved e Low-p_T-Thr</td>
<td>m^α</td>
</tr>
</tbody>
</table>
Systematics

- Analysis is statistically limited
- Leading experimental systematics
 - background modelling uncertainty
 - lepton efficiency/resolutions
- Theoretical uncertainty
 - Branching ratio
 - QCD scale

<table>
<thead>
<tr>
<th>Source</th>
<th>(\mu)</th>
<th>(\sigma \times B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spurious Signal</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{B}(H \rightarrow \ell\ell\gamma))</td>
<td>5.8</td>
<td>–</td>
</tr>
<tr>
<td>QCD</td>
<td>4.7</td>
<td>1.1</td>
</tr>
<tr>
<td>(\ell, \gamma,) jets</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>2.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Luminosity</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Pile-up</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Minor prod. modes</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(H \rightarrow \gamma\gamma) bkg</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Parton Shower</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Total systematic</td>
<td>11</td>
<td>7.9</td>
</tr>
<tr>
<td>Statistical</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33</td>
<td>32</td>
</tr>
</tbody>
</table>

Uncertainty measured values [%]
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS

Results

- **Observed:**
 \[
 \mu = 1.5 \pm 0.5 = 1.5 \pm 0.5 \text{ (stat.)} \pm 0.2 \text{ (syst.)}
 \]

- **Cross Section**
 \[
 \sigma \times \text{BR}(\ell \ell \gamma) \big|_{m\ell\ell<30 \text{ GeV}}: \quad 8.7 \pm 2.8 \text{ fb} = 8.7 \pm 2.7 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \text{ fb}
 \]
Results

• Significance above background-only hypothesis: 3.2σ (expected 2.1σ)

• First evidence for $H \rightarrow \ell\ell\gamma$
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

Internal consistency of results

- Good consistency between all measured channels

<table>
<thead>
<tr>
<th>Category</th>
<th>Measured $(\sigma \cdot B)/ (\sigma \cdot B)_\text{SM}$</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Stat.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Syst.)</td>
</tr>
<tr>
<td>ee resolved categories</td>
<td>1.3</td>
<td>+1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.3</td>
</tr>
<tr>
<td>ee merged categories</td>
<td>0.8</td>
<td>+0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.3</td>
</tr>
<tr>
<td>$\mu\mu$ categories</td>
<td>1.9</td>
<td>±0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td>VBF-enriched categories</td>
<td>2.7</td>
<td>+1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.3</td>
</tr>
<tr>
<td>high-p_T categories</td>
<td>3.2</td>
<td>+1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.3</td>
</tr>
<tr>
<td>low-p_T categories</td>
<td>0.8</td>
<td>±0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>ee categories</td>
<td>1.0</td>
<td>±0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.2</td>
</tr>
<tr>
<td>$\mu\mu$ categories</td>
<td>1.9</td>
<td>±0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.2</td>
</tr>
</tbody>
</table>

H → $\gamma^* \gamma \rightarrow ll\gamma$ global fit

$\sigma \cdot B/(\sigma \cdot B)_\text{SM}$

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

- Total unc.
- Syst. only

Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley
Summary

- Photons — a versatile tool for physics
- Improved analysis techniques always being developed
 - Function decompositions, MVA categorisations, Improved ID, Merged electrons
- Improved limits on $X/G^* \rightarrow \gamma\gamma$ & $H(\rightarrow \gamma\gamma) + E_T^{\text{Miss}}$
- First evidence for $H \rightarrow \ell\ell\gamma$
 - $m_{\ell\ell} < 30$ GeV : 3.2σ, $\mu = 1.5 \pm 0.5$
 - Looking forward to more data to study this process in more detail
Additional Information
Useful links

- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ResultswithData2018
- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

ATLAS EM cluster shower shapes

$$f_1 = \frac{E_{S_1}}{E_{\text{tot}}}$$

$$f_{\text{side}} = \frac{E_{S_1} - E_{S_3}}{E_{S_1}}$$

$$R_\eta = \frac{E_{S_2}}{E_{S_2}^{\eta \times 7}}$$

$$R_\phi = \frac{E_{S_2}}{E_{S_2}^{\phi \times 7}}$$

$$R_{\text{had}} = \frac{E_{\text{had}}^{\text{S} \times \text{S}_1}}{E_{\text{T}}^{\text{S} \times \text{S}_1}}$$

$$w_{\eta_2} = \sqrt{\frac{\Sigma E_i \eta_i^2}{\Sigma E_i} - \left(\frac{\Sigma E_i \eta_i}{\Sigma E_i} \right)^2}$$

width in a 3×5 ($\Delta \eta \times \Delta \phi$) region of cells in S_2

$$w_s = \sqrt{\frac{\Sigma E_i (i - i_{\text{max}})^2}{\Sigma E_i}}$$

$w_{s,3}$ uses 3×2 strips ($\eta \times \phi$)

$w_{s,\text{tot}}$ is defined similarly but uses 20×2 strips

$$\Delta E = E_{\text{max},2}^{S_1} - E_{\text{min}}^{S_1}$$

$$E_{\text{ratio}} = \frac{E_{\text{max},1}^{S_1} - E_{\text{max},2}^{S_1}}{E_{\text{max},1}^{S_1} + E_{\text{max},2}^{S_1}}$$
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley
Functional Decomposition

- An template is formed by taking Sherpa MC γγ events and fitting with series of basis functions, $E_n(z)$.
- Best-fit hyperparameters α, λ ($m_0 = 150$ GeV) are determined by maximizing the marginal likelihood.
- After templates formed, S+B fit applied to the templates. Systematic variations provide separate templates and spurious signal systematic determined from maximum envelope of $|N_{SS}|$.

$z(m) = \left(\frac{m-m_0}{\lambda}\right)^\alpha$

$F_n(z) = \sqrt{2} \ e^{-nz}$

$E_n(z) = \sum_{m=0}^{n} d_{nm} F_m(z)$
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley

2x2D background estimate

- Data-driven method to estimate the diphoton purity
- Irreducible background $\gamma\gamma$, $V\gamma\gamma$ + $V\gamma$ and reducible background $j\gamma$, γj, jj
- By fitting the fraction of the contribution of the different components in the 16 categories the purity can be obtained

\[
N_{AA}^{all} = N_{AA}^{\gamma\gamma} + N_{AA}^{\gamma j} + N_{AA}^{j\gamma} + N_{AA}^{jj}
\]
Evidence for $H \rightarrow \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley
Evidence for $H \rightarrow \ell^+\ell^-\gamma$ and searches for new physics involving photons with ATLAS

H($\rightarrow\gamma\gamma$)+MET: Event yield

120 GeV $< m_{\gamma\gamma} < 130$ GeV

<table>
<thead>
<tr>
<th>Category</th>
<th>High E_T^{miss} BDT tight</th>
<th>High E_T^{miss} BDT loose</th>
<th>Low E_T^{miss} BDT tight</th>
<th>Low E_T^{miss} BDT loose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>143</td>
</tr>
<tr>
<td>Backgrounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM Higgs boson</td>
<td>3.74 ± 0.25</td>
<td>3.40 ± 0.28</td>
<td>3.12 ± 0.23</td>
<td>9.9 ± 1.5</td>
</tr>
<tr>
<td>Non-resonant</td>
<td>7.8 ± 1.3</td>
<td>25.3 ± 2.3</td>
<td>9.8 ± 1.5</td>
<td>130 ± 5</td>
</tr>
<tr>
<td>Total</td>
<td>11.6 ± 1.3</td>
<td>28.7 ± 2.3</td>
<td>12.9 ± 1.5</td>
<td>140 ± 5</td>
</tr>
</tbody>
</table>

Z'_B model, $m_{Z'_B} = 1000$ GeV, $m_\chi = 50$ GeV

| Signal yields | 0.7 ± 3.1 | 0.1 ± 0.6 | 0.1 ± 0.6 | 0.1 ± 0.6 |

Z'-2HDM model, $m_A = 800$ GeV and $m_\chi = 500$ GeV

| Signal yields | 0.6 ± 3.1 | 0.1 ± 0.4 | 0.05 ± 0.26 | 0.03 ± 0.17 |

2HDM+a model, $m_A = 600$ GeV, $m_a = 200$ GeV, $\tan \beta = 1.0$, $\sin \theta = 0.35$

| Signal yields | 0.6 ± 3.1 | 0.2 ± 1.2 | 0.1 ± 0.5 | 0.1 ± 0.7 |
Evidence for $H \to \ell^+ \ell^- \gamma$ and searches for new physics involving photons with ATLAS - Anthony Morley
Evidence for H→ℓ⁺ℓ⁻γ and searches for new physics involving photons with ATLAS - Anthony Morley

2HDM+a