кHCh

New results on theoretically clean observables in rare B-meson decays from LHCb

1. Measurement of $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$decays with Run $1+$ Run 2 data

Marco Santimaria (INFN-LNF) on behalf of the LHCb collaboration LHC Seminar 23/03/2021, CERN (Virtual)

The power of indirect searches

- Precision measurements are a powerful tool to unveil new particles indirectly :
- 1970: charm presence invoked from the suppression of $K^{0} \rightarrow \mu^{+} \mu^{-}$before the J / ψ discovery
- 1973: 3X3 CKM matrix is needed to explain the CP violation observed in kaons
- 1987: top mass limit from loop contribution in $B^{0}-\bar{B}^{0}$ mixing: $m_{t}>50 \mathrm{GeV}$

$$
\text { [PRD } 2(1970) 1285] \quad[P T P 49(1973) 652-657] \quad \text { [PLB } 192 \text { (1987) 245-252] }
$$

- Because of the large b mass, rare B decays offer a rich phenomenology for indirect searches of New Physics (NP)
$b \rightarrow s \ell^{+} \ell^{-}$are FCNC processes that can only occur via loop in the SMs
observables are altered by new (virtual) particles

Effective theory for rare B decays

- $b \rightarrow s \ell^{+} \ell^{-}$can be described with an "Effective Hamiltonian", where high- and low-energy contributions are factorised $\left(M_{b} \ll M_{W}\right)$:

Full theory

Effective description

- "point-like interaction" as in the Fermi description of the neutron decay
$\mathcal{H}_{e f f}=\frac{G_{F}}{\sqrt{2}} \sum_{i} V_{C K \lambda}^{i} C_{i}(\lambda) \mathcal{O}_{i}(\lambda)$
- Wilson coefficients (short-distance): evaluated in perturbation theory
- Local operators (long-distance): the corresponding form factor is computed with, e.g., lattice QCD

Probing New Physics with rare B decays

- SM operators for $b \rightarrow s \ell^{+} \ell^{-}$:

$$
\begin{aligned}
\mathcal{O}_{9}^{(\prime)} & =\left(\bar{s} P_{\mathrm{L}(\mathrm{R})} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
\mathcal{O}_{10}^{(\prime)} & =\left(\bar{s} P_{\mathrm{L}(\mathrm{R})} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma^{5} \ell\right)
\end{aligned}
$$

- NP can alter $C_{i}^{()}$but also introduce new operators
$\Delta \mathcal{H}_{\mathrm{NP}}=\frac{c_{i}}{\Lambda_{\mathrm{NP}}^{2}} \mathcal{O}_{i}$

Precision measurements go well beyond collision energies!

- The latest global fit prefer NP contributions to C_{9} and C_{10}
- Crucial input from $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$(here from the latest ATLAS+CMS+LHCb combination)
- Next talk!

$B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$decays in the SM

- In the SM, B^{0} and B_{s}^{0} decays to two muons are FCNC and helicity suppressed :

(tree)

(penguin)

(box)

$$
\mathscr{B}\left(B_{q}^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=\frac{\tau_{B_{q}} G_{F}^{4} M_{W}^{4} \sin ^{4} \theta_{W}}{8 \pi^{5}}\left|C_{10}^{\mathrm{SM}} y_{t b} V_{t q}^{*}\right|^{2}(\underbrace{2}_{B_{q}} m_{B_{q}} m_{\mu}^{2} \sqrt{1-\frac{4 m_{\mu}^{2}}{m_{B_{q}}^{2}}} \frac{1}{1-y_{q}} \quad q=d, s
$$

single Wilson coefficient \& single hadronic constant (known at $\simeq 0.5 \%$!)
[PRD 98 (2019) 074512]

- Very clean prediction in the SM:

$$
\begin{gathered}
\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=(3.66 \pm 0.14) \times 10^{-9} \\
\mathscr{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=(1.03 \pm 0.05) \times 10^{-10}
\end{gathered}
$$

$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$: not only branching fractions

- By measuring the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$ effective lifetime:
$\tau_{\mu^{+} \mu^{-}}=\frac{\tau_{B_{s}}}{1-y_{s}^{2}}\left[\frac{1+2 A_{\Delta \Gamma}^{\mu^{+} \mu^{-}} y_{s}+y_{s}^{2}}{1+A_{\Delta \Gamma}^{\mu^{\prime} \mu^{-}} y_{s}}\right]$

$$
A_{\Delta \Gamma}^{\mu^{+} \mu^{-}} \equiv \frac{R_{H}^{\mu^{+}} \mu^{-}-R_{L}^{\mu^{+} \mu^{-}}}{R_{H}^{\mu+\mu^{-}}+R_{L}^{\mu^{\mu} \mu^{-}}}
$$

$$
y_{s}=\frac{\Delta \Gamma_{s}}{2 \Gamma_{s}}
$$

- we can extract the asymmetry $A_{\Delta \Gamma}^{\mu^{+} \mu^{-}}$, $=1$ in the SM
- Clean observable \rightarrow additional NP constraints

- Sensitivity to $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma(\mathrm{ISR})$ at high $m_{\mu^{+} \mu^{-}}$, new observable included this analysis

- SM prediction at $\mathcal{O}\left(10^{-10}\right)$ for $m_{\mu^{+} \mu^{-}}>4.9 \mathrm{GeV}$ [JHEP 11 (2017) 184] [PRD 97 (2018) 053007]

- Bremsstrahlung (FSR) experimentally included in $\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$via PHOTOS

Experimental measurements

- 1984 The search begins at CLEO $\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)<2 \times 10^{-4}(90 \% \mathrm{CL}) \quad$ [PRD 30 (1984) 11]
- 2015 First observation of $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$with CMS + LHCb (Run 1 data) [Nature 522 (2015) 68-72]
- 2017 First observation of $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$with a single experiment by LHCb ($4.4 \mathrm{fb}^{-1}$) $\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.0 \pm 0.6_{-0.2}^{+0.3}\right) \times 10^{-9}$

- 2020 combination of ATLAS, CMS and LHCb:
- $\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(2.69_{-0.35}^{+0.37}\right) \times 10^{-9}$
- 2.1σ away from the SM
- $\tau_{\mu^{+} \mu^{-}}=1.91_{-0.35}^{+0.37} \mathrm{ps}$
- $\mathscr{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<1.9 \times 10^{-10} \quad(95 \% \mathrm{CL})$
- Only experimental limit today on:
$\mathscr{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)<1.6 \times 10^{-7}$ from BaBar at $90 \% \mathrm{CL} \quad$ [PRD 77 (2008) 011104]

The LHCb data-taking

- Large $b \bar{b}$ cross section in the LHCb acceptance $(2<\eta<5)$ $\sigma(p p \rightarrow b \bar{b}) \simeq 144 \mu \mathrm{~b}(\sqrt{\mathrm{~s}}=13 \mathrm{TeV})$ [PRL 118 (2017) 052002]
- Run 2 luminosity levelled to $\simeq 4.4 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ ($>2 x$ the design value)
- Full LHCb dataset $3 \mathrm{fb}^{-1}\left(\sqrt{\mathrm{~s}}_{\text {Runl }}=7 \& 8 \mathrm{TeV}\right)+$ $6 \mathrm{fb}^{-1}\left(\sqrt{\mathrm{~s}}_{\text {Run2 }}=13 \mathrm{TeV}\right)$: excellent LHC performance!

The LHCb detector

- High vertex resolution (VELO)
$\sigma_{\mathrm{IP}}=15+29 / p_{T} \mu \mathrm{~m}$
(B travel distance $\mathcal{O}(1 \mathrm{~cm})$)
- Low momentum muon trigger
$p_{T_{\mu}}>1.75 \mathrm{GeV}$ (2018)
- Particle identification capabilities (RICH+CALO+MUON) $\epsilon_{\mu} \sim 98 \%$ with $\epsilon_{\pi \rightarrow \mu} \lesssim 1 \%$
- Excellent momentum resolution (T stations)
$\sigma_{p} / p=0.5-1.0 \%(p \in[2,200] \mathrm{GeV})$
\rightarrow narrow mass peak

Analysis strategy

- Will show here the "legacy measurement" of LHCb on the full Run $1+\operatorname{Run} 2$ data ($9 \mathrm{fb}^{-1}$)
- The strategy is well established since 2017 but introduces several improvements
- Select muon pairs with $m_{\mu^{+} \mu^{-}} \in[4900,6000] \mathrm{MeV}$ forming a displaced vertex
- Signal mass region is blinded until the analysis is finalised

- The selected dataset is dominated by combinatorial background
- To reject it we use a multivariate classifier "BDT" (Boosted Decision Tree)
- The algorithm primarily exploits isolation and vertex detachment

- Events are categorised into 6 "BDT bins" : flat signal BDT and decreasing combinatorial
- We measure the branching fractions with a simultaneous mass fit in 10 categories (2 Runs X 5 BDT bins)
- (The first bin [0, 0.25] is excluded since it's background-dominated)
- The signal BDT output is calibrated on data-corrected simulation
- Cross-checked on $B^{0} \rightarrow K^{+} \pi^{-}$data
- Shape determined by PID and trigger efficiencies
- BDT-lifetime correlations accounted for in the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}(\gamma)$ signals (see \rightarrow backup)

Mass shape calibration

- The $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$mean and resolution values are measured on data
- The mean is obtained from $B^{0} \rightarrow K^{+} \pi^{-}$ and $B_{s}^{0} \rightarrow K^{+} K^{-}$data for $B^{0} \rightarrow \mu^{+} \mu^{-}$ and $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$
- The resolution is interpolated from mass fits to $c \bar{c}$ and $b \bar{b}$ resonances:
$\sigma_{m\left(\mu^{+} \mu^{-}\right)}=21.96 \pm 0.63 \mathrm{MeV}$ (Run 2)

Normalisation: mass fits

- To measure the branching fraction, luminosity and cross-section uncertainties are avoided by computing the ratio to a well-known channel
- Two normalisation channels are employed: perform mass fits to compute the yields

1. $B^{+} \rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) K^{+}$

Two muons in the final state
\rightarrow similar trigger and reconstruction
2. $B^{0} \rightarrow K^{+} \pi^{-}$

Two-body B decay
\rightarrow same signal topology

Normalisation: results

- The observed signal yield is converted into a BF according to:

$$
\mathcal{B}\left(B_{d, s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\underbrace{\underbrace{\frac{\epsilon_{\text {norm }}}{\epsilon_{\text {sig }}}}}_{\underbrace{\mathcal{B}_{\text {norm }}}_{\alpha_{d}} N_{n o r m}} \alpha^{\alpha_{s}} \times \frac{f_{\text {norm }}}{f_{d, s}} \times N_{B_{d, s}^{0} \rightarrow \mu^{+} \mu^{-}}
$$

- BF and yield of the normalisation channel
- Signal/normalisation efficiency ratio
- Ratio of hadronisation fraction (for the B_{s}^{0})

Very recent LHCb combination $f_{s} / f_{d}(7 \mathrm{TeV})=0.239 \pm 0.008, f_{s} / f_{d}(13 \mathrm{TeV})=0.254 \pm 0.008$

- Combining the two normalisation channels we obtain the following "single-event sensitivities" :

$$
\begin{aligned}
& \alpha_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}=(2.49 \pm 0.09) \times 10^{-11} \\
& \alpha_{B^{0} \rightarrow \mu^{+} \mu^{-}}=(6.52 \pm 0.11) \times 10^{-12} \\
& \alpha_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma}=(2.98 \pm 0.11) \times 10^{-11}
\end{aligned}
$$

- Assuming SM signals we expect:

$$
\begin{aligned}
& N\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=147 \pm 8 \\
& N\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=16 \pm 1 \\
& N\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)_{\mathrm{SM}} \approx 3
\end{aligned}
$$

Backgrounds

After applying a strong PID cut on both muons, three classes of backgrounds remain:

1. Combinatorial, over the full mass spectrum (floating component)
2. Semileptonic backgrounds (partially reconstructed) populating the left mass sideband
3. $B_{(s)}^{0} \rightarrow h^{+} h^{\prime-} \rightarrow \mu^{+} \mu^{-}$doubly misidentified background, peaking in $B^{0} \rightarrow \mu^{+} \mu^{-}$mass region

Semileptonic background estimate

1. Channels with one misidentified hadron: $B^{0} \rightarrow \pi^{-} \mu^{+} \nu_{\mu}, B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ and $\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}$
2. Channels with two muons in the final state: $B^{+(0)} \rightarrow \pi^{+(0)} \mu^{+} \mu^{-}$and $B_{c}^{+} \rightarrow J / \psi\left(\mu^{+} \mu^{-}\right) \mu^{+} \nu_{\mu}$

- Each source is estimated by normalising to the $B^{+} \rightarrow J / \psi K^{+}$channel:

$$
N_{x}=\overline{N_{B^{+} \rightarrow J / \psi K}+\frac{f_{x}}{f_{d}} \frac{\mathcal{B}_{x}}{\mathcal{B}_{B^{+} \rightarrow J / \psi K^{+}}} \frac{\overline{\epsilon_{B^{+} \rightarrow J / \psi K^{+}}^{\text {Tot }}}}{\substack{\text { Tot }}}}
$$

- Efficiency corrected $B^{+} \rightarrow J / \psi K^{+}$yield
- Branching fraction X hadronisation fraction
- Total background efficiency
- Inputs mostly from LHCb:

$$
\begin{array}{r}
B^{0} \rightarrow \pi^{-} \mu^{+} \nu_{\mu}: 91 \pm 4 \\
B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}: 23 \pm 3 \\
\Lambda_{b}^{0} \rightarrow p \mu^{-} \nu_{\mu}: 4 \pm 2 \\
B^{+(0)} \rightarrow \pi^{+(0)} \mu^{+} \mu^{-}: 26 \pm 3 \\
B_{c}^{+} \rightarrow J / \psi\left(\mu^{+} \mu^{-}\right) \mu^{+} \nu_{\mu}: 7.2 \pm 0.3
\end{array}
$$

[PDG]
$\left[\begin{array}{llll}{[P R L} & 126 & (2021) & 081804]\end{array}\right.$
[Nature Physics 10 (2015) 1038]
$\left.\& \begin{array}{llll}{\left[\begin{array}{llll}\text { JHEP } & 10 & (2015) & 034\end{array}\right]} \\ \hline \text { PRD } & 86 & (2012) & 114025\end{array}\right]$
[PRD 100 (2019) 112006]

$B_{(s)}^{0} \rightarrow h^{+} h^{-} \rightarrow \mu^{+} \mu^{-}$background estimate

- B decays to two hadrons (π, K) form a peaking background when both final-state particles are misidentified as muons
- This contribution is estimated by normalising to $B^{0} \rightarrow K^{-} \pi^{+}$events:

$$
N_{B \rightarrow h h \rightarrow \mu \mu}=\frac{N_{B^{0} \rightarrow K^{+} \pi^{-}}}{\epsilon_{B^{0} \rightarrow K^{+} \pi^{-}}^{\text {trig }}} \frac{1}{f_{B^{0} \rightarrow K^{+} \pi^{-} / B \rightarrow h h}} \times \epsilon_{B^{0} \rightarrow \mu^{+} \mu^{-}}^{\text {trig }} \times \epsilon_{h h \rightarrow \mu \mu}
$$

- Efficiency corrected $B^{0} \rightarrow K^{+} \pi^{-}$yield
- $B^{0} \rightarrow K^{+} \pi^{-}$contribution within the total $B_{(s)}^{0} \rightarrow h^{+} h^{-}$[PDG]
- Trigger efficiency and double misidentification rate (from data)
- Each $B \rightarrow h h$ channel is weighted according to its expectation to make the total $B_{(s)}^{0} \rightarrow h^{+} h^{\prime-} \rightarrow \mu^{+} \mu^{-}$
- An alternative estimate is performed on $h \mu$ data (single misidentification) to cross check the result
- Estimated background events in the high BDT

$$
B_{(s)}^{0} \rightarrow h^{+} h^{-} \rightarrow \mu^{+} \mu^{-}: 22 \pm 1
$$ region ($\mathrm{BDT} \geq 0.5$) :

- now we're ready for the fit!

Mass fit result

- $B^{0} \rightarrow \mu^{+} \mu^{-}$and $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ compatible with background only at 1.7σ and 1.5σ

Branching fraction results

- $\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.09_{-0.43-0.11}^{+0.46+0.15}\right) \times 10^{-9}$ spot on previous LHCb result and SM compatible
- Limits set with the CL_{s} method:
[J. Phys. G28 (2002) 2693]

$$
\begin{aligned}
& \mathscr{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<2.6 \times 10^{-10}(95 \% \mathrm{CL}) \\
& \mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)_{m_{\mu^{+} \mu^{-}}>4.9 \mathrm{GeV}}<2.0 \times 10^{-9} \quad(95 \% \mathrm{CL})
\end{aligned}
$$

$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$effective lifetime: strategy

Since the expected sensitivity on $A_{\Delta \Gamma}^{\mu^{+} \mu^{-}}$is low, the effective lifetime measurement introduces some simplifications wrt the previous:

- Tighter mass cut, $m_{\mu^{+} \mu^{-}}>5320 \mathrm{MeV}$: mass fit model with $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$signal + combinatorial
- Looser PID requirement (no misidentified backgrounds)
- 1. Mass fit on two BDT bins is performed to extract sWeights [NIM A555 (2005) 356-369]

$B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$effective lifetime: results

- 2. The sWeights are applied to obtain the background-subtracted decay time distribution
- which is then fitted with an exponential X acceptance function

- The acceptance function (efficiency vs decay time) is tested by measuring the known $B^{0} \rightarrow K^{+} \pi^{-}$ and $B_{s}^{0} \rightarrow K^{+} K^{-}$effective lifetimes (see $\rightarrow \underline{\text { backup) }}$

$$
\tau_{\mu^{+} \mu^{-}}=2.07 \pm 0.29 \pm 0.03 \mathrm{ps}
$$

- Result compatible at 1.5σ with $A \Delta_{\Gamma}^{\mu^{+} \mu^{-}}=1$ (SM) and at 2.2σ with $A \Delta_{\Gamma}^{\mu^{+} \mu^{-}}=-1$
- Run 3 data are needed to say more

Conclusions

- The legacy measurement of $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$represents an important milestone for LHCb and a crucial input for the "flavour anomalies"
- Achieved the most precise singleexperiment measurement of the $\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$with $\sim 15 \%$ error

- Most precise measurement of $\tau_{\mu^{+} \mu^{-}}$
- First limit on $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ ISR at high $m_{\mu^{+} \mu^{-}}$
- $\mathscr{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)$limit at 2.5 X the SM prediction: its observation in Run 3 heavily relies on the PID
- Paper will appear soon!
- That's it for $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$, now more rare decays with Kostas
backup slides

Mass fits: low BDT regions

Mass fits: high BDT regions

Additional material

- Power-law Interpolation of the resolution from $c \bar{c}$ and $b \bar{b}$ resonances
- --- B^{0} and B_{s}^{0} masses
- 2D likelihood scans

Effective lifetime of $B^{0} \rightarrow K^{+} \pi^{-}$decays

$$
\tau_{K^{+} \pi^{-}}=1.512 \pm 0.016 \mathrm{ps}
$$

Effective lifetime of $B_{s}^{0} \rightarrow K^{+} K^{-}$decays

$$
\tau_{K^{+} K^{-}}=1.433 \pm 0.026 \mathrm{ps}
$$

What's next?

- Combined power of \mathscr{B} and $\tau_{\mu \mu}$ to constrain MSSM

LHCb Run 4 projection

- $\sim 20 \%$ precision on the time-dependent CP asymmetry $\left(S_{\mu \mu}\right)$ with $300 \mathrm{fb}^{-1}$

$A_{\Delta \Gamma}^{\mu^{+} \mu^{-}}$dependence \& systematic errors

Lifetime acceptance correction for $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}(\gamma)$:

- The BDT-lifetime correlation is accounted for in the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}(\gamma)$ signals with BDT corrections
- The nominal fit assumes $A_{\Delta \Gamma}^{\mu^{+} \mu^{-}}=+1(\mathrm{SM})$, but results under $A_{\Delta \Gamma}^{\mu^{+} \mu^{-}}=0,-1$ will be published as well
- Translates into about $+5 \%$ and $+11 \% \mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$value, respectively

Main source of systematic errors :

- $\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right): f_{s} \mid f_{d}$
- $\mathscr{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right): B_{(s)}^{0} \rightarrow h^{+} h^{-} \rightarrow \mu^{+} \mu^{-}$background
- $\mathscr{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)$: semileptonic backgrounds

Model-independent observables

$$
\begin{aligned}
\mathcal{B}\left(B_{q}^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\exp } & =\frac{\tau_{B_{q}} G_{F}^{4} M_{W}^{4} \sin ^{4} \theta_{W}}{8 \pi^{5}}\left|C_{10}^{\mathrm{SM}} V_{t b} V_{t q}^{*}\right|^{2} f_{B_{q}}^{2} m_{B_{q}} m_{\mu}^{2} \\
& \times \sqrt{1-\frac{4 m_{\mu}^{2}}{m_{B_{q}}^{2}}} \times\left(|P|^{2}+|S|^{2}\right) \times \frac{1+y_{q} \mathcal{A}_{\Delta \Gamma}^{\mu^{+} \mu^{-}}}{1-y_{q}^{2}}
\end{aligned}
$$

$$
\mathcal{A}_{\Delta \Gamma}^{\mu^{+} \mu^{-}}=\frac{|P|^{2} \cos \left(2 \varphi_{P}-\phi_{s}^{\mathrm{NP}}\right)-|S|^{2} \cos \left(2 \varphi_{S}-\phi_{s}^{\mathrm{NP}}\right)}{|P|^{2}+|S|^{2}}
$$

$$
\begin{aligned}
& P=\frac{C_{10}-C_{10}^{\prime}}{C_{10}^{\mathrm{SM}}}+\frac{m_{B_{q}}^{2}}{2 m_{\mu}}\left(\frac{m_{b}}{m_{b}+m_{s}}\right)\left(\frac{C_{P}-C_{P}^{\prime}}{C_{10}^{\mathrm{SM}}}\right) \equiv|P| e^{i \varphi_{P}}, \\
& S=\sqrt{1-\frac{4 m_{\mu}^{2}}{m_{B_{q}}^{2}} \frac{m_{B_{q}}^{2}}{2 m_{\mu}}\left(\frac{m_{b}}{m_{b}+m_{s}}\right)\left(\frac{C_{S}-C_{S}^{\prime}}{C_{10}^{S} C^{\mathrm{S}}}\right) \equiv|S| e^{i \varphi_{S}} .} .
\end{aligned}
$$

2HDM

