

New results on theoretically clean observables in rare B-meson decays from LHCb

1. Measurement of $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ decays with Run 1 + Run 2 data

<u>Marco Santimaria</u> (INFN-LNF) on behalf of the LHCb collaboration LHC Seminar 23/03/2021, CERN (Virtual)

The power of indirect searches

- Precision measurements are a powerful tool to <u>unveil new particles indirectly</u> :
- <u>1970</u>: charm presence invoked from the suppression of $K^0 \rightarrow \mu^+\mu^-$ before the J/ψ discovery
- <u>1973</u>: 3X3 CKM matrix is needed to explain the CP violation observed in kaons
- <u>1987</u>: top mass limit from loop contribution in $B^0 \overline{B}^0$ mixing: $m_t > 50$ GeV

[PRD 2 (1970) 1285] [PTP 49 (1973) 652-657] [PLB 192 (1987) 245-252]

 Because of the large b mass, rare B decays offer a rich phenomenology for <u>indirect searches of</u> <u>New Physics (NP)</u>

 $b \rightarrow s\ell^+\ell^-$ are FCNC processes that can only occur via loop in the SM

observables are altered by new (virtual) particles

Effective theory for rare *B* decays [Rev.Mod.Phys. 68 (1996) 1125-1144]

• $b \rightarrow s\ell^+\ell^-$ can be described with an "Effective Hamiltonian", where high- and low-energy contributions are factorised $(M_b \ll M_W)$: cay at the quark level in the full (a) and effective (b) theory.

on of new physics effects. We will discuss this issue briefly in these

• "point-like interaction" as in the Fermi description of the neutron decay

$$\mathcal{H}_{eff} = \frac{440 \text{FF}}{\sqrt{22}\pi} \mathcal{H}_{ts}^* \mathcal{H}_{bb} \sum_{ii} \left[\mathcal{C}_{i} \mathcal{Q}_{i} + \mathcal{C}_{i}^{\prime} \mathcal{Q}_{i}^{\prime} \right]$$

$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_{i} V_{CKM}^{i} \mathcal{C}_{i}(\lambda) \mathcal{O}_{i}(\lambda)$$

$$\text{Wilson constrained on the second seco$$

- Wilson coefficients (short-distance): evaluated in perturbation theory
- Local operators (long-distance): the corresponding form factor is computed with, e.g., lattice QCD

Probing New Physics with rare B decays

- SM operators for $b \to s\ell^+\ell^-$:
 - $\mathcal{O}_{9}^{(\prime)} = \left(\overline{s}P_{\mathrm{L(R)}}b\right)\left(\overline{\ell}\gamma^{\mu}\ell\right)$ $\mathcal{O}_{10}^{(\prime)} = \left(\overline{s}P_{\mathrm{L(R)}}b\right)\left(\overline{\ell}\gamma^{\mu}\gamma^{5}\ell\right)$

• NP can alter $C_i^{(')}$ but also introduce new operators

$$\Delta \mathcal{H}_{\rm NP} = \underbrace{\frac{c_i}{\Lambda_{\rm NP}^2}}_{O_i} \mathcal{O}_i$$

Precision measurements go well beyond collision energies!

$fightharpoints expected to be very small compared to <math>\mathcal{B}$, $\mathcal{H} \to \mu^+ \mu^-$ decays in the SM cansitions. The corresponding decay of the B^0 tandard Model branching fraction

• In the SM, B^0 and B^0_1 decays to two muons are FCNC and helicity suppressed : Hamiltonian (1.22), the time-integrated, untagged and helicityg fraction (1.23) can be worked out $\mathbb{B}^0_{s} \to \mathbb{P}^1_{s}$ ing the amp $\mathbb{B}^0_{s} \to \mu^+ \mu^ \dot{\mu}_{+}$ the SMb, the only non-negligible $\bar{b}\bar{d}\bar{b}$ intribution to $\mu B_{d,s}^{0+} \to \bar{b}\mu^+\mu^- W^{\bar{b}+}$ $\mu^+ W^+$ the operator \mathcal{O}_{107} whose magnitude is the effective Hamiltonian \mathcal{O}_{107} whose magnitude is the real Wilson coefficient C_{10}^{SRB} SEa and \mathcal{O}_{S} and pseudo-scalar B_s^0 is are in fact absent in the SM, with the only exception of the W u_{μ} be been described by the second seco eft-handedness of the charged current also implies that the Wil-corresponding to the \mathcal{O}'_i operators are suppressed by $\mathcal{O}(m_q/m_b)$, he SM branching fraction can therefore the charged suppressed by $\mathcal{O}(m_q/m_b)$, by $\mathcal{O}(m_q/m_b)$, by $\mathcal{O}(m_q/m_b)$, $X_{\mu}^{0} \xrightarrow{\mathcal{B}} (B_{SM}^{0}) \xrightarrow{\mu} \frac{1}{W_{W}} \xrightarrow{\mathcal{B}} (G_{SM}^{4}) \xrightarrow{\mathcal{A}} (G_{SM}^{4}) \xrightarrow$ $\frac{1}{8\pi^5}$ **Processes** for the $B_s^0 \to \mu^+ \mu^-$ decay allowed in the coefficient wisingle hadronic constant (know $\approx 0.5\% 0.5\%$). The same decay in theories extending the SM, where $\times f_{B_q}^{\text{ingle Wilson}}$ b the $B_s^0 \to \mu^+ \mu^-$ declars the relevance decay in accave the engine of the second entry $(ht+process; y^2)$, is $\begin{array}{l} \overset{e}{\operatorname{rentral}} \overset{e}{\operatorname{rentral}}$ 2 nesesh@SM;8))nitsforalndugstærkiahpphesiborfiproæesslæssefor led at both end of its propagator to the top quark The main Where new particles, denoted as showing and a can contributions appear at two-loop level in EW interactions and 5/22

$B_s^0 \rightarrow \mu^+ \mu^-$: not only branching fractions

LHC seminar 03/2021

Experimental measurements

Candidates / (50 MeV/c²) 35 Total <u>1984</u> The search begins at CLEO - - $B_s^0 \rightarrow \mu^+\mu^-$ LHCb 30 $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) < 2 \times 10^{-4} (90\% \text{ CL}) \text{ [PRD 30 (1984) 11]}$ $- B^0 \rightarrow \mu^+ \mu^-$ BDT > 0.5•••• Combinatorial 25 $B^0_{(s)} \rightarrow h^+ h^{\prime -}$ <u>2015</u> First observation of $B_s^0 \rightarrow \mu^+\mu^-$ with CMS + 20 LHCb (Run 1 data) [Nature 522 (2015) 68-72] 15 $\rightarrow \mu^{0} \rightarrow \mu^{-} \overline{\nu}_{\mu}$ 10 $- B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu$ <u>2017</u> First observation of $B_s^0 \rightarrow \mu^+ \mu^-$ with a single experiment by LHCb (4.4 fb^{-1}) $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$ 5800 5000 5200 5400 6000 5600 $m_{\mu^+\mu^-}$ [MeV/*c*²] [PRL 118 (2017) 191801] 2020 combinations of ATSLASCGM Suandel 2020: ATLAS, CMS, LHCb - Summer 2020 0.6

The LHCb data-taking

- Large $b\overline{b}$ cross section in the LHCb acceptance $(2 < \eta < 5)$ $\sigma(pp \rightarrow b\overline{b}) \simeq 144 \ \mu b \ (\sqrt{s} = 13 \text{ TeV}) \ [PRL \ 118 \ (2017) \ 052002]$
- Run 2 luminosity levelled to $\simeq 4.4 \times 10^{32}$ cm⁻²s⁻¹ (>2x the design value)
- Full LHCb dataset 3 fb⁻¹ ($\sqrt{s}_{Run1} = 7 \& 8 \text{ TeV}$) + 6 fb⁻¹ ($\sqrt{s}_{Run2} = 13 \text{ TeV}$) : excellent LHC performance!

The LHCb detector

[JINST 3 (2008) S08005] [Int. J. Mod. Phys. A 30, 1530022 (2015)]

- High vertex resolution (VELO) $\sigma_{\text{IP}} = 15 + 29/p_T \ \mu\text{m}$ (*B* travel distance $\mathcal{O}(1 \text{ cm})$)
- Low momentum muon trigger $p_{T_{\mu}} > 1.75 \text{ GeV} (2018)$

- Particle identification capabilities (RICH+CALO+MUON) $\epsilon_{\mu} \sim 98\%$ with $\epsilon_{\pi \to \mu} \lesssim 1\%$
- Excellent momentum resolution (T stations) $\sigma_p/p = 0.5 - 1.0\% \ (p \in [2,200] \text{ GeV})$ \rightarrow narrow mass peak

Analysis strategy

- Will show here the "legacy measurement" of LHCb on the full Run 1 + Run 2 data (9 fb^{-1})
- The strategy is well established since 2017 but introduces several improvements

- Select muon pairs with $m_{\mu^+\mu^-} \in [4900,6000]$ MeV forming a displaced vertex
- Signal mass region is blinded until the analysis is finalised

- The selected dataset is dominated by combinatorial background
- To reject it we use a multivariate classifier "BDT" (Boosted Decision Tree)
- The algorithm primarily exploits isolation and vertex detachment

BDT calibration

- Events are categorised into 6 "BDT bins" : flat signal BDT and decreasing combinatorial
- We measure the branching fractions with a simultaneous mass fit in 10 categories (2 Runs X 5 BDT bins)
- (The first bin [0, 0.25] is excluded since it's background-dominated)

- The signal BDT output is calibrated on data-corrected simulation
- Cross-checked on $B^0 \to K^+ \pi^-$ data
- Shape determined by PID and trigger efficiencies
- BDT-lifetime correlations accounted for in the $B_s^0 \rightarrow \mu^+ \mu^-(\gamma)$ signals (see \rightarrow <u>backup</u>)

 10^{-4}

Mass shape calibration

- The $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ mean and resolution values are measured on data
- The mean is obtained from $B^0 \to K^+\pi^$ and $B_s^0 \to K^+K^-$ data for $B^0 \to \mu^+\mu^$ and $B_s^0 \to \mu^+\mu^-$

[•] The resolution is interpolated from mass fits to $c\overline{c}$ and $b\overline{b}$ resonances: $\sigma_{m(\mu^+\mu^-)} = 21.96 \pm 0.63$ MeV (Run 2)

Normalisation: mass fits

To measure the branching fraction, luminosity and respectively for the branching fraction, luminosity and <math>respectively for the branching fraction of the branching fraction $\cdots \overline{B}^0_{\mathfrak{s}} \to K^+\pi^$ computing the ratio to a well-known channel

 $\times 10^3$

2.2

0.8

().6

0.2 E

5100

2. $B^0 \rightarrow K^+ \pi$

Two-body B decay

5200samessignal teppology 5500

- Combinatorial Two normalisation channels are employed: perform mass fits to compute the yields ----- Part. reco. Candidate
 - 1. $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$

Two muons in the final state \rightarrow similar trigger and reconstruction

5600

LHCb

Normalisation: results

• The observed signal yield is converted into a BF according to:

$$\mathcal{B}(B^0_{d,s} \to \mu^+ \mu^-) = \underbrace{\frac{\mathcal{B}_{norm}}{N_{norm}} \times \frac{\epsilon_{norm}}{\epsilon_{sig}} \times \frac{f_{norm}}{f_{d,s}}}_{\alpha_d} \times N_{B^0_{d,s} \to \mu^+ \mu^-}$$

- BF and yield of the normalisation channel
- Signal/normalisation efficiency ratio
- Ratio of hadronisation fraction (for the B_s^0) Very recent LHCb combination f_s/f_d (7 TeV) = 0.239 ± 0.008 , f_s/f_d (13 TeV) = 0.254 ± 0.008
- Combining the two normalisation channels we obtain the following "single-event sensitivities":

$$\alpha_{B_s^0 \to \mu^+ \mu^-} = (2.49 \pm 0.09) \times 10^{-11}$$
$$\alpha_{B^0 \to \mu^+ \mu^-} = (6.52 \pm 0.11) \times 10^{-12}$$
$$\alpha_{B_s^0 \to \mu^+ \mu^- \gamma} = (2.98 \pm 0.11) \times 10^{-11}$$

• Assuming SM signals we expect:

$$N(B_s^0 \to \mu^+ \mu^-)_{\rm SM} = 147 \pm 8$$
$$N(B^0 \to \mu^+ \mu^-)_{\rm SM} = 16 \pm 1$$
$$N(B_s^0 \to \mu^+ \mu^- \gamma)_{\rm SM} \approx 3$$

After applying a strong PID cut on both muons, three classes of backgrounds remain:

- 1. Combinatorial, over the full mass spectrum (floating component)
- 2. Semileptonic backgrounds (partially reconstructed) populating the left mass sideband

3. $B_{(s)}^0 \rightarrow h^+ h^{'-} \rightarrow \mu^+ \mu^-$ doubly misidentified background, peaking in $B^0 \rightarrow \mu^+ \mu^-$ mass region

Semileptonic background estimate

- 1. Channels with one misidentified hadron: $B^0 \to \pi^- \mu^+ \nu_\mu$, $B^0_s \to K^- \mu^+ \nu_\mu$ and $\Lambda^0_b \to p \mu^- \overline{\nu}_\mu$
- 2. Channels with two muons in the final state: $B^{+(0)} \rightarrow \pi^{+(0)} \mu^+ \mu^-$ and $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)\mu^+\nu_\mu$
- Each source is estimated by normalising to the $B^+ \rightarrow J/\psi K^+$ channel:

$$N_x = N_{B^+ \to J/\psi K^+} \frac{f_x}{f_d} \frac{\mathcal{B}_x}{\mathcal{B}_{B^+ \to J/\psi K^+}} \frac{\epsilon_x^{Tot}}{\epsilon_{B^+ \to J/\psi K^+}}$$

- Efficiency corrected $B^+ \rightarrow J/\psi K^+$ yield
- Branching fraction X hadronisation fraction
- Total background efficiency

• Estimated background events in the high BDT region (BDT ≥ 0.5):

$$B^{0} \to \pi^{-}\mu^{+}\nu_{\mu} : 91 \pm 4$$
$$B^{0}_{s} \to K^{-}\mu^{+}\nu_{\mu} : 23 \pm 3$$
$$\Lambda^{0}_{b} \to p\mu^{-}\overline{\nu}_{\mu} : 4 \pm 2$$
$$B^{+(0)} \to \pi^{+(0)}\mu^{+}\mu^{-} : 26 \pm 3$$
$$B^{+}_{c} \to J/\psi(\mu^{+}\mu^{-})\mu^{+}\nu_{\mu} : 7.2 \pm 0.3$$

• Inputs mostly from LHCb:

$B^0_{(s)} \rightarrow h^+ h^{-} \rightarrow \mu^+ \mu^-$ background estimate [LHCB-PAPER-2021-007]

• This contribution is estimated by normalising to $B^0 \rightarrow K^- \pi^+$ events:

$$N_{B \to hh \to \mu\mu} = \frac{N_{B^0 \to K^+\pi^-}}{\epsilon_{B^0 \to K^+\pi^-}^{\text{trig}}} \times \frac{1}{f_{B^0 \to K^+\pi^-/B \to hh}} \times \epsilon_{B^0 \to \mu^+\mu^-}^{\text{trig}} \times \epsilon_{hh \to \mu\mu}$$

- Efficiency corrected $B^0 \rightarrow K^+ \pi^-$ yield
- $B^0 \to K^+\pi^-$ contribution within the total $B^0_{(s)} \to h^+h^{'-}$ [PDG]
- Trigger efficiency and double misidentification rate (from data)
- Each $B \to hh$ channel is weighted according to its expectation to make the total $B_{(s)}^0 \to h^+ h^{'-} \to \mu^+ \mu^-$
- An alternative estimate is performed on $h\mu$ data (single misidentification) to cross check the result
 - Estimated background events in the high BDT region (BDT ≥ 0.5):

$$B^0_{(s)} \to h^+ h^{'-} \to \mu^+ \mu^- : 22 \pm 1$$

• now we're ready for the fit!

Mass fit result

• $B^0 \rightarrow \mu^+ \mu^-$ and $B^0_s \rightarrow \mu^+ \mu^- \gamma$ compatible with background only at 1.7σ and 1.5σ

Marco Santimaria

Branching fraction results

$B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime: strategy

Since the expected sensitivity on $A_{\Delta\Gamma}^{\mu^+\mu^-}$ is low, the effective lifetime measurement introduces some simplifications wrt the previous:

- Tighter mass cut, $m_{\mu^+\mu^-} > 5320$ MeV: mass fit model with $B_s^0 \rightarrow \mu^+\mu^-$ signal + combinatorial
- Looser PID requirement (no misidentified backgrounds)
- 1. Mass fit on two BDT bins is performed to extract sWeights [NIM A555 (2005) 356-369]

• The acceptance function (efficiency vs decay time) is tested by measuring the known $B^0 \to K^+\pi^$ and $B_s^0 \to K^+K^-$ effective lifetimes (see $\to \underline{backup}$)

$$\tau_{\mu^+\mu^-} = 2.07 \pm 0.29 \pm 0.03$$
 ps

- Result compatible at 1.5σ with $A\Delta_{\Gamma}^{\mu^{+}\mu^{-}} = 1$ (SM) and at 2.2σ with $A\Delta_{\Gamma}^{\mu^{+}\mu^{-}} = -1$
- Run 3 data are needed to say more

Conclusions

- The legacy measurement of $B^0_{(s)} \rightarrow \mu^+ \mu^-$ represents an important milestone for LHCb and a crucial input for the "flavour anomalies"
- Achieved the most precise singleexperiment measurement of the $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)$ with ~ 15 % error

- Most precise measurement of $au_{\mu^+\mu^-}$
- First limit on $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ ISR at high $m_{\mu^+ \mu^-}$
- $\mathscr{B}(B^0 \to \mu^+ \mu^-)$ limit at 2.5X the SM prediction: its observation in Run 3 heavily relies on the PID
- Paper will appear soon!
- That's it for $B_{(s)}^0 \rightarrow \mu^+ \mu^-$, now more rare decays with Kostas

backup slides

Mass fits: low BDT regions

24/22

Additional material

- Power-law Interpolation of the ulletresolution from $c\overline{c}$ and $b\overline{b}$ resonances
- --- B^0 and B^0_s masses

2D likelihood scans ullet

0.1

0.2

0.3

 $5 - 5^{\times 10^{-9}}$

 $B(B_s^0 \rightarrow \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \, \mathrm{GeV}/c^2}$

-5

 -10^{L}_{0}

 $\tau_{K^+\pi^-} = 1.512 \pm 0.016$ ps

Marco Santimaria

Effective lifetime of $B_s^0 \rightarrow K^+K^-$ decays

 $\tau_{K^+K^-} = 1.433 \pm 0.026$ ps

Marco Santimaria

What's next?

- Combined power of ${\mathscr B}$ and $\tau_{\mu\mu}$ to constrain MSSM

• ~ 20 % precision on the time-dependent CP asymmetry $(S_{\mu\mu})$ with 300 fb⁻¹

$A_{\Lambda\Gamma}^{\mu^+\mu^-}$ dependence & systematic errors

Lifetime acceptance correction for $B_s^0 \rightarrow \mu^+ \mu^-(\gamma)$:

- The BDT-lifetime correlation is accounted for in the $B_s^0 \rightarrow \mu^+ \mu^-(\gamma)$ signals with BDT corrections
- The nominal fit assumes $A_{\Delta\Gamma}^{\mu^+\mu^-} = +1$ (SM), but results under $A_{\Delta\Gamma}^{\mu^+\mu^-} = 0, -1$ will be published as well
- Translates into about +5 % and +11 % $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)$ value, respectively

Main source of systematic errors :

- $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) : f_s/f_d$
- $\mathscr{B}(B^0 \to \mu^+ \mu^-)$: $B^0_{(s)} \to h^+ h^{'-} \to \mu^+ \mu^-$ background
- $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)$: semileptonic backgrounds

Model-independent observables

$$\mathcal{B}(B_q^0 \to \mu^+ \mu^-)_{\exp} = \frac{\tau_{B_q} G_F^4 M_W^4 \sin^4 \theta_W}{8\pi^5} |C_{10}^{SM} V_{tb} V_{tq}^*|^2 f_{B_q}^2 m_{B_q} m_\mu^2 \times \sqrt{1 - \frac{4m_\mu^2}{m_{B_q}^2}} \times (|P|^2 + |S|^2) \times \frac{1 + y_q \mathcal{A}_{\Delta\Gamma}^{\mu^+ \mu^-}}{1 - y_q^2}$$

$$\mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}} = \frac{|P|^{2}\cos(2\varphi_{P} - \phi_{s}^{\mathrm{NP}}) - |S|^{2}\cos(2\varphi_{S} - \phi_{s}^{\mathrm{NP}})}{|P|^{2} + |S|^{2}} \qquad P = \frac{C_{10} - C_{10}'}{C_{10}^{\mathrm{SM}}} + \frac{m_{B_{q}}^{2}}{2m_{\mu}} \left(\frac{m_{b}}{m_{b} + m_{s}}\right) \left(\frac{C_{P} - C_{P}'}{C_{10}^{\mathrm{SM}}}\right) \equiv |P|e^{i\varphi_{P}}, \\ S = \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{q}}^{2}}} \frac{m_{B_{q}}^{2}}{2m_{\mu}} \left(\frac{m_{b}}{m_{b} + m_{s}}\right) \left(\frac{C_{S} - C_{S}'}{C_{10}^{\mathrm{SM}}}\right) \equiv |S|e^{i\varphi_{S}}.$$

31/22