Beauty and charm production in pp collisions via D-meson measurements with ALICE

CERN LHC seminar

Fabio Catalano on behalf of the ALICE Collaboration 30^{th} March 2021

Politecnico and INFN Torino, Italy

fabio.catalano@cern.ch

• Measurements of non-prompt and prompt D mesons at midrapidity in pp collisions at $\sqrt{s} = 5.02$ TeV

Production and hadronisation of beauty and charm quarks

► Paper recently submitted for publication → arXiv:2102.13601

- ► Heavy flavours (c and b quarks) produced in hadronic collisions from hard-scattering processes
- Production described with perturbative QCD calculations based on the factorisation theorem

 $\sigma_{\rm hh \rightarrow Hh} = \textit{PDF}(x_{\rm a}, Q^2) \; \textit{PDF}(x_{\rm b}, Q^2) \otimes \sigma_{\rm ab \rightarrow q\bar{q}} \otimes D_{\rm q \rightarrow h}(z_{\rm q}, Q^2)$

Parton distribution functions (non perturbative) Partonic cross section (perturbative) Fragmentation functions (non perturbative)

- ► Heavy flavours (c and b quarks) produced in hadronic collisions from hard-scattering processes
- ► ALICE provides precise measurements of heavy flavours down to low *p*_T and at midrapidity where the bulk of the production is located

- Measurements in pp collisions
 - test of pQCD model calculations for charm and beauty-quark production

- ► Heavy flavours (c and b quarks) produced in hadronic collisions from hard-scattering processes
- ► ALICE provides precise measurements of heavy flavours down to low *p*_T and at midrapidity where the bulk of the production is located

- Measurements in pp collisions
 - test of pQCD model calculations for charm and beauty-quark production
 - insights on heavy-flavour hadronisation
- Measured Λ⁺_c/D⁰ ratio significantly higher than LEP average → hadronisation modified in pp collisions

LEP: L. Gladilin EPJ C75 (2015) 19

- ► Heavy flavours (c and b quarks) produced in hadronic collisions from hard-scattering processes
- ► ALICE provides precise measurements of heavy flavours down to low p_T and at midrapidity where the bulk of the production is located

Measurements in pp collisions

- test of pQCD model predictions for charm and beauty-quark production
- insights on heavy-flavour hadronisation
- reference for the measurements in p–Pb and Pb–Pb collisions

$$R_{\mathrm{AA}}\left(p_{\mathrm{T}}
ight) =rac{1}{\langle N_{coll}^{\mathrm{AA}}
angle}rac{\mathrm{d}N_{\mathrm{AA}}/\mathrm{d}p_{\mathrm{T}}}{\mathrm{d}N_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$$

Beauty production and hadronisation at the LHC

Beauty-quark production and hadronisation well studied at the LHC with many interesting measurements performed over the years

30/03/2021

Beauty production and hadronisation at the LHC

 ALICE measurements complementary to other experiments observations in terms of rapidity interval, center-of-mass energy, low-p_T reach and particle species

30/03/2021

A Large Ion Collider Experiment

P.A. Zyla et al. (PDG) PTEP 2020 8, 083C01 (2020)

$D^{0}\text{, }D^{+}\text{ and }D^{+}_{s}$ mesons are measured via their hadronic decays

Meson	$M~({ m GeV}/c^2)$	$c au~(\mu { m m})$	Decay	BR (%)
$\mathrm{D}^{0}\left(car{u} ight)$	~ 1.865	~ 123	$K^{-}\pi^{+}$	\sim 3.95
$\mathrm{D}^+~(car{d})$	~ 1.870	~ 312	${\rm K}^-\pi^+\pi^+$	~ 9.38
$\mathrm{D_s^+}~(car{s})$	~ 1.968	~ 151	$\phi(\rightarrow {\rm K^-K^+})\pi^+$	~ 2.24

 ALICE able to reconstruct all decay products and resolve the secondary vertex SV from the primary one PV

- ► Candidates from pairs/triplets of tracks at midrapidity (|η| < 0.8) with proper charge-sign combination</p>
- To reduce the combinatorial background
 - particle identification of decay tracks
 - geometrical and kinematic selections based on displaced decay-vertex topology

P.A. Zyla et al. (PDG) PTEP 2020 8, 083C01 (2020)

$D^{0}\text{, }D^{+}\text{ and }D^{+}_{s}$ mesons are measured via their hadronic decays

Meson	$M \; ({ m GeV}/c^2)$	$c au~(\mu { m m})$	Decay	BR (%)
$\mathrm{D}^{0}\left(car{u} ight)$	~ 1.865	~ 123	$K^{-}\pi^{+}$	~ 3.95
$\mathrm{D}^+~(car{d})$	~ 1.870	~ 312	${\rm K}^-\pi^+\pi^+$	~ 9.38
$\mathrm{D_s^+}~(car{s})$	~ 1.968	~ 151	$\phi(\rightarrow {\rm K^-K^+})\pi^+$	~ 2.24

 ALICE able to reconstruct all decay products and resolve the secondary vertex SV from the primary one PV

• Prompt D^0 at very low p_T

- No selections on decay-vertex topology
- Background distribution subtracted with track-rotation technique

Prompt and non-prompt D mesons

Prompt D

P.A. Zyla et al. (PDG) PTEP 2020 8, 083C01 (2020)

- D mesons
 - Prompt, from charm-quark hadronisation or excited charm-hadron decays
 - Non-prompt, from beauty-hadron decays

ev

Non-prompt D

- different B-meson contributions for each D species

	from \mathbf{B}^0	from \mathbf{B}^+	from $\mathbf{B}_{\mathrm{s}}^{0}$
non-prompt \mathbf{D}^0	$\sim 40\%$	$\sim 60\%$	_
non-prompt \mathbf{D}^+	$\sim 75\%$	$\sim 25\%$	_
non-prompt $\mathbf{D}_{\mathrm{s}}^+$	$\sim 25\%$	$\sim 20\%$	$\sim 55\%$

(PDG BRs and FFs from $Z \to b \bar{b}$ decays, contributions from baryons negligible)

P.A. Zyla et al. (PDG) PTEP 2020 8, 083C01 (2020)

- D mesons
 - Prompt, from charm-quark hadronisation or excited charm-hadron decays
 - Non-prompt, from beauty-hadron decays

- ► Non-prompt D mesons → beauty-quark production and hadronisation
 - different B-meson contributions for each D species
- Possible to separate prompt and non-prompt D mesons
 - beauty hadrons have $c\tau\simeq 500~\mu{\rm m}$
 - non-prompt D on average more displaced from the interaction vertex
 - different topology and kinematic features

- D-meson candidate selection based on machine-learning (ML) techniques
 - loose linear selections on geometrical, kinematic and PID quantities applied for data reduction

ALICE

- Supervised ML models "learn" to make predictions from a set of examples, where the correct classification is known
- They can perform more complex selections w.r.t. the linear selections traditionally used

- ► To train the model a training set is needed. It is built from
 - Monte Carlo productions \rightarrow prompt and non-prompt D mesons
 - data collected by the experiment → combinatorial background from sidebands of invariant-mass distribution
- ► After the training, the ML model is used to predict the class of unknown particle candidates

- Multi-class Boosted Decision Trees (BDT) employed to separate prompt D mesons, non-prompt D mesons and combinatorial background
 - different BDTs for $\rm D^0,\,D^+$ and $\rm D_s^+$ mesons and for different transverse-momentum (p_T) intervals

- BDT input: candidate kinematic, geometrical and PID quantities
- BDT output: 3 scores related to the candidate probability to be prompt, non-prompt and background
- Selections applied on these scores to reduce combinatorial background and reject prompt or non-prompt D mesons

F. Catalano (PoliTo and INFN)

- ► Non-prompt D-meson measurements → selections on BDT scores tuned to suppress the prompt contribution and enhance the non-prompt one in the raw yields
- Prompt efficiencies smaller by a factor $\sim 5 700$ depending on the species and $p_{\rm T}$

30/03/2021

Non-prompt D mesons — Raw-yield extraction

- $\blacktriangleright~D^0$, D^+ and D_s^+ yields extracted from fit to the invariant-mass distributions of particle candidates
- ► Enhanced fraction of non-prompt D mesons in the raw yields → estimated with a data-driven approach

Data-driven estimation of non-prompt fraction

- Define *n* sets of selections with different prompt and non-prompt D-meson contributions
- For each selection set the raw yield and the efficiencies are related to the corrected yields of prompt N_{prompt} and non-prompt N_{non-prompt} D mesons

Acceptance × efficiency Non-prompt 10 Prompt 10^{-2} ALICE Performance O Prompt D nn $\sqrt{s} = 5.02 \text{ TeV}$ < n < 10 GeV/cNon-prompt D 10 10 ML based selection

An algebraic system is obtained

$$\begin{cases} (\operatorname{Acc} \times \epsilon)_{1}^{\operatorname{prompt}} \cdot N_{\operatorname{prompt}} + (\operatorname{Acc} \times \epsilon)_{1}^{\operatorname{non-prompt}} \cdot N_{\operatorname{non-prompt}} = Y_{1} \\ \cdots \\ (\operatorname{Acc} \times \epsilon)_{n}^{\operatorname{prompt}} \cdot N_{\operatorname{prompt}} + (\operatorname{Acc} \times \epsilon)_{n}^{\operatorname{non-prompt}} \cdot N_{\operatorname{non-prompt}} = Y_{n} \end{cases}$$

30/03/2021

Data-driven estimation of non-prompt fraction

 Define *n* sets of selections with different prompt and non-prompt D-meson contributions

- Corrected yields of prompt and non-prompt D mesons obtained from χ² minimization of the system
- F. Catalano (PoliTo and INFN)

Data-driven estimation of non-prompt fraction

ALICE

▲ D⁺ + D⁺_s

12 14 16

10

pp, $\sqrt{s} = 5.02 \text{ TeV}$

18 20 22 24 p_ (GeV/c)

- Define *n* sets of selections with different prompt and non-prompt D-meson contributions
- Corrected yields of prompt and non-prompt D mesons obtained from χ² minimization of the system

"Natural"
$$f_{\rm non-prompt}$$
 (FONLL + PYTHIA) 0
D⁰, D⁺ D_{\rm s}^+

 Non-prompt fraction f_{non-prompt} evaluated for a given set of selections as

$$f_{\text{non-prompt}}^{i} = \frac{(\text{Acc} \times \epsilon)_{i}^{\text{non-prompt}} \cdot \textit{N}_{\text{non-prompt}}}{(\text{Acc} \times \epsilon)_{i}^{\text{non-prompt}} \cdot \textit{N}_{\text{non-prompt}} + (\text{Acc} \times \epsilon)_{i}^{\text{prompt}} \cdot \textit{N}_{\text{prompt}}}$$

30/03/2021

F. Catalano (PoliTo and INFN)

 $f_{\sf non-prompt}$

0.8

0.6

0.4

Prompt D^+ and D_s^+ mesons — Raw-yield extraction

- Selections on BDT scores tuned to reject combinatorial background and non-prompt D mesons
- Measurements extended to lower p_T and total uncertainties reduced of ~ 5 40% w.r.t. previously published results based on linear selections (EPJC 79 388 (2019))

30/03/2021

Prompt D^+ and D_s^+ mesons — Prompt fraction

- ► Data-driven approach not feasible in all the measured p_T intervals → prompt fraction from theory-driven method based on FONLL predictions for beauty-hadron production
- ► Good agreement with the data-driven approach where the comparison is possible

30/03/2021

- Prompt and non-prompt D mesons measured down to very low transverse momenta
- Prompt D⁰ from EPJC 79 388 (2019)
- Prompt D^+ and D_s^+ measurements updated using ML \rightarrow larger $p_{\rm T}$ reach w.r.t. previous results

Prompt D⁰: EPJC 79 388 (2019)

- Cross section ratios of non-prompt and prompt D mesons increase with p_T up to 12 GeV/c
 - beauty-hadron $p_{\rm T}$ distribution harder than D mesons
- Hint of larger ratio for D_s^+ mesons
 - larger contribution of beauty-hadron decays compared to non-strange D mesons

$$b\to c\bar c s \qquad \bar b\to c\bar c \bar s$$

FONLL: M. Cacciari et al. JHEP 1210 137 (2012) PYTHIA8: T. Sjöstrand et al. JHEP 05 026 (2006) GM-VFNS: G. Kramer et al., Nucl. Phys. B 925 415-430 (2017)

D-meson measurements compared with pQCD calculations at next-to-leading-order with next-to-leading log resummation

► FONLL

- $m_{\rm c}=1.5~{\rm GeV}/c^2$ and $m_{\rm b}=4.75~{\rm GeV}/c^2$
- CTEQ6.6 PDFs
- Prompt D $f(c \rightarrow D)$ from LEP average, D_s^+ not available
- Non-prompt D $f(b \rightarrow H_b)$ from e^+e^- and PYTHIA8 for $H_b \rightarrow D + X$ decay kinematics and BRs

GM-VFNS

- $m_{\rm c}=1.3~{\rm GeV}/c^2$ and $m_{\rm b}=4.5~{\rm GeV}/c^2$
- CTEQ14 PDFs
- Prompt D $f(c \rightarrow D)$ from e^+e^- measurements
- Non-prompt D
 - 'single step' with $b \to D + X$ FFs from e^+e^- (T. Kneesch et al. Nucl. Phys. B 799 34-59)
 - 'double step' with $f({
 m b} o {
 m H_{b}})$ and ${
 m H_{b}} o {
 m D} + {
 m X}$ decays (P. Bolzoni et al. J. Phys. G 41 075006)

Results — Comparison with pQCD calculations

 D-meson p_T-differential cross sections described by FONLL calculations down to low p_T

- ▶ Prompt D⁰ mesons on FONLL upper edge. Non-prompt D compatible with central values
 - $f({\rm c} \to {\rm D})$ and $f({\rm b} \to {\rm H_b})$ fragmentation fractions (FFs) from ${\rm e^+e^-}$ measurements
 - non-prompt D mesons PYTHIA8 to describe $\mathrm{H_b} \rightarrow \mathrm{D} + \mathrm{X}$ decays

30/03/2021

Results — Comparison with pQCD calculations

Prompt D⁰: EPJC 79 388 (2019) GM-VFNS: G. Kramer et al, Nucl. Phys. B 925 415-430 T. Kneesch et al. Nucl. Phys. B 799 34-59 P. Bolzoni et al. J. Phys. G 41 075006

 GM-VFNS calculations describe within uncertainties the prompt D-meson measurements

- ▶ Non-prompt D mesons constrain the non-perturbative terms of the factorisation theorem
 - approach using FFs for $b \to D + X$ from e^+e^- measurements underestimate the measurements
 - better description with separate $b \to H_b$ fragmentation and $H_b \to D + X$ decay kinematics

30/03/2021

Results — D-meson yield ratios

FONLL: M. Cacciari et al. JHEP 1210 137 (2012) PYTHIA8: T. Sjöstrand et al. JHEP 05 026 (2006)

- **•** D-meson ratios flat in $p_{\rm T}$ and in good agreement with FONLL predictions
 - Compatible prompt and non-prompt $\mathrm{D}^+/\mathrm{D}^0$ ratios
 - $\rm D_s^+/(\rm D^0+\rm D^+)$ ratio higher for non-prompt D mesons. Substantial $\rm B_s^0-decay$ contribution

30/03/2021

Results — Fragmentation fractions of charm guarks

PYTHIA8: P. Skands et al. EP IC 74 3024 (2014) LEP: L. Gladilin EP.IC 75 19 (2015) H1: EPJC 38 447-459 (2005)

ZEUS: IHEP 09 058 (2013) ATLAS: Nucl. Phys. B 907 717-763 (2016). ALICE, 7 TeV: PLB 718 279-294 (2012)

- Charm-quark $f_s/(f_u + f_d)$ ratio from constant fit to prompt $D_{-}^{+}/(D^{0} + D^{+})$
- Very precise measurement in agreement with previous observations
- Compatible with PYTHIA8 Monash-13 tune simulations (2.7 σ)

$$\left(rac{f_{
m s}}{f_{
m u}+f_{
m d}}
ight)_{
m charm}=0.137\pm0.005(
m stat)$$

 $\pm0.008(
m tot.syst)$

ALI-PUB-482597

Results — Fragmentation fractions of beauty guarks

PYTHIA8: P. Skands et al. EP IC 74 3024 (2014) LEP: Y. Amhis et al. (HELAV) arXiv:1909.12524 CDE: Phys. Rev. D 77 072003 (2008)

ATLAS: PRI 115 262001 (2015) LHCb. 7 TeV: Phys. Rev. D 85 032008 (2012) LHCb. 13 TeV: Phys. Rev. D 100 031102 (2019)

- Beauty-guark $f_s/(f_u + f_d)$ from constant fit to non-prompt $D_{-}^{+}/(D^{0} + D^{+})$ ratio
- Correction to account for non-prompt D_{a}^{+} mesons from B^{0} and B^{+} decays
- Value compatible with previous measurements and PYTHIA8

$$\left(\frac{f_{\rm s}}{f_{\rm u}+f_{\rm d}}\right)_{\rm beauty} = 0.127 \pm 0.036({\rm stat})$$

+ 0.014(tot syst)

ALI-PUB-482601

Results — Beauty-guark production cross section

Dielectron: Phys. Rev. C 102 055204 (2020) FONLL: M. Cacciari et al. JHEP 1210 137 (2012) NNLO: S. Catani et al. JHEP 03 029 (2021)

 \triangleright p_T-differential non-prompt D-meson measurement \rightarrow p_T-integrated cross section \rightarrow bb production cross section at midrapidity

- D-meson average compatible with previous ALICE measurements
- Good agreement with FONLL and calculations including NNLO QCD radiative corrections

$$\left. \frac{\mathrm{d}\sigma_{\mathrm{b}\overline{\mathrm{b}}}}{\mathrm{d}y} \right|_{|y|<0.5} = 34.5 \pm 2.4 \mathrm{(stat)}$$

$$\left. \begin{array}{c} +4.7\\ -2.9 \mathrm{(tot.syst)} \ \mu\mathrm{b} \end{array} \right.$$

Results — Beauty-quark production cross section

 $\begin{array}{l} \label{eq:phi} \mbox{PHENIX: PRL 103 082002 (2009)} \\ \mbox{UA1: PLB 256 121-128 (1991)} \\ \mbox{CDF: Phys. Rev. D 75 012010 (2007)} \\ \mbox{b} \rightarrow J/\Psi: JHEP 11 065 (2012) \\ \mbox{b} \rightarrow e: PLB 721 13-23 (2013) \\ \mbox{Dielectron, 5 TeV: PRC 102 055204 (2020)} \\ \mbox{Dielectron, 7 TeV: JHEP 09 064 (2018) \\ \mbox{Dielectron, 13 TeV: PLB 788 509-518 (2019) } \\ \mbox{FONLL: M. Cacciari et al. JHEP 1210 137 (2012) } \\ \mbox{NNLO: S. Catani et al. JHEP 03 029 (2021) } \end{array}$

 Beauty-quark production described by FONLL and NNLO calculations over a wide interval of center-of-mass energies

30/03/2021

Towards the total charm cross section in pp at 5 TeV

Precise D-meson measurements down to zero. $p_{\rm T}$ and recent measurements of charmed baryon states \rightarrow crucial for the evaluation of $c\bar{c}$ cross section at midrapidity

- Major upgrade of ALICE detectors and read-out electronics ongoing
- New Inner Tracking System (ITS2) crucial for heavy-flavour measurements

	ITS	ITS2
# of layers	6	7
X/X_0	1.14%	0.38%
innermost radius	39 mm	22 mm
pixel size	$50\times425~\mathrm{m}\mu^2$	$30\times 30~{\rm m}\mu^2$
read-out rate	1 kHz	few 100s kHz pp 50 kHz Pb–Pb

► Upgraded Inner Tracking System → improved track and secondary-vertex resolution

Prospects for Run 3

- ► Upgraded Inner Tracking System → improved track and secondary-vertex resolution
- ► Expected large increase (~ 5 · 10³) of integrated luminosity L_{int}
 - dedicated software triggers for heavy-flavour hadron selection
- Very precise measurements of non-prompt D and B mesons down to p_T = 0 GeV/c

30/03/2021

Conclusions

- Prompt and non-prompt D mesons measured with high precision down to low p_T using ML techniques
- Addition to ALICE HF measurements
 - potential to constrain pQCD calculations
 - precise study of $b\bar{b}$ production and hadronisation
 - crucial for $c \overline{c}$ cross section measurement
- Just an appetizer for ALICE beauty measurements of Run 3 with upgraded detectors and larger data samples

Backup

b-hadron	Fraction at Z (%)	Fraction at $\mathrm{p}ar{\mathrm{p}}$ (%)
B^{0} , B^{+}	40.8 ± 0.7	34.4 ± 2.1
$\mathrm{B_s^0}$	10.0 ± 0.8	11.5 ± 1.3
$\Lambda_{ m b}^0$	8.4 ± 1.1	19.8 ± 4.6

Prompt D^+ and D_s^+ mesons — Prompt fraction

Prompt fraction from theory-driven method based on FONLL predictions

$$f_{\rm prompt} = 1 - \frac{N_{\rm raw}^{\rm D \ non-prompt}}{N_{\rm raw}^{\rm D}} = 1 - \left(\frac{{\rm d}^2\sigma}{{\rm d}p_{\rm T}{\rm d}y}\right)_{\rm non-prompt}^{\rm FONLL} \cdot \frac{({\rm Acc}\times\epsilon)_{\rm non-prompt}\cdot\Delta y\Delta p_{\rm T}\cdot{\rm BR}\cdot L_{\rm int}}{N^{\rm D}+\overline{\rm D},{\rm raw}/2}$$

30/03/2021

Prompt fraction — Impact-parameter method

EPJC 79 388 (2019)

30/03/2021

F. Catalano (PoliTo and INFN)

Selections improved with machine learning

- Example from Pb–Pb collisions
- ► Using ML selections it is possible to extract the signal in a region (2 < p_T < 3 GeV/c) where the linear selections do not give a clear D⁺_s peak

30/03/2021

Prompt D^+ and D^+_{\circ} cross sections vs. 2019 paper

• Measurement of prompt D^+ and D_s^+ mesons updated using $ML \rightarrow$ extension to lower transverse momenta w.r.t. 2019 result

ALI-PUB-482557

Results — Comparison with pQCD predictions

• D-meson $p_{\rm T}$ -differential cross sections described by FONLL calculations down to low $p_{\rm T}$

- prompt D^0 and D^+ mesons on FONLL upper edge. Non-prompt D compatible with central values
- $f({\rm c} \to {\rm D})$ and $f({\rm b} \to {\rm H_b})$ fragmentation fractions (FFs) from ${\rm e^+e^-}$ measurements
- non-prompt D mesons PYTHIA8 to describe $\mathrm{H_b} \rightarrow \mathrm{D} + \mathrm{X}$ decays

30/03/2021

Results — Comparison with pQCD predictions

Prompt D⁰: EPJC 79 388 (2019) GM-VFNS: Nucl. Phys. B 925 415-430 (2017) Nucl. Phys. B 799 34-59 (2008) J. Phys. G 41 075006 (2014)

- GM-VFNS calculations describe within uncertainties the prompt D-meson measurements
- Non-prompt D mesons constrain the non-perturbative terms of the factorisation theorem
 - approach using FFs for $b \rightarrow D + X$ from e^+e^- measurements underestimate the measurements
 - better description with separate $b \rightarrow H_b$ fragmentation and $H_b \rightarrow D + X$ decay kinematics

30/03/2021

Table 3: $p_{\rm T}$ -integrated production cross sections in the measured $p_{\rm T}$ range for prompt and non-prompt D mesons in the range |y| < 0.5 in pp collisions at $\sqrt{s} = 5.02$ TeV.

Meson	Kinematic range (GeV/c)	Visible cross section (µb)
Prompt		
\mathbf{D}^0	$0 < p_{\rm T} < 36$	$440\pm19(stat)\pm29(syst)\pm9(lumi)\pm3(BR)$
\mathbf{D}^+	$0 < p_{\rm T} < 36$	$195\pm23(stat)\pm16(syst)\pm4(lumi)\pm3(BR)$
D_s^+	$1 < p_{\mathrm{T}} < 24$	$64 \pm 9(\text{stat})^{+6}_{-7}(\text{syst}) \pm 1(\text{lumi}) \pm 2(\text{BR})$
Non-prompt		
\mathbf{D}^0	$1 < p_{\rm T} < 24$	$14.5 \pm 1.2(stat) \pm 1.3(syst) \pm 0.3(lumi) \pm 0.1(BR)$
\mathbf{D}^+	$2 < p_{\rm T} < 16$	$4.1 \pm 0.7 (stat) \pm 0.4 (syst) \pm 0.1 (lumi) \pm 0.1 (BR)$
D_s^+	$2 < p_{\mathrm{T}} < 12$	$3.4\pm0.6(stat)\pm0.3(syst)\pm0.1(lumi)\pm0.1(BR)$

Table 4: Production cross sections of prompt and non-prompt D mesons in the range |y| < 0.5 in pp collisions at $\sqrt{s} = 5.02$ TeV.

Meson	Extr. factor to $p_{\rm T} > 0$	$\mathrm{d}\sigma/\mathrm{d}y _{ y <0.5}$ (µb)
Prompt		
D^0	$1.0000\substack{+0.0003\\-0.0000}$	$440 \pm 19(\text{stat}) \pm 29(\text{syst}) \pm 9(\text{lumi}) \pm 3(\text{BR})$
\mathbf{D}^+	$1.0000\substack{+0.0003\\-0.0000}$	$195 \pm 23(\text{stat}) \pm 16(\text{syst}) \pm 4(\text{lumi}) \pm 3(\text{BR})$
D^+_s	$1.28\substack{+0.35 \\ -0.12}$	$82 \pm 12(\text{stat}) \pm 8(\text{syst}) \pm 2(\text{lumi}) \pm 3(\text{BR})^{+23}_{-8}(\text{extr})$
Non-prompt		
D^0	$1.28\substack{+0.01\\-0.04}$	$18.4 \pm 1.5(\text{stat}) \pm 1.6(\text{syst}) \pm 0.4(\text{lumi}) \pm 0.1(\text{BR})^{+0.1}_{-0.6}(\text{extr})$
\mathbf{D}^+	$2.22\substack{+0.05\\-0.19}$	$9.0 \pm 1.5(\text{stat}) \pm 0.9(\text{syst}) \pm 0.2(\text{lumi}) \pm 0.2(\text{BR})^{+0.2}_{-0.8}(\text{extr})$
D^+_s	$2.03\substack{+0.04 \\ -0.15}$	$6.9 \pm 1.2 (stat) \pm 0.7 (syst) \pm 0.1 (lumi) \pm 0.2 (BR)^{+0.1}_{-0.5} (extr)$

Total D-meson cross section ratios

Table 5: Ratios of the measured production cross sections of prompt and non-prompt D mesons in the |y| < 0.5 in pp collisions at $\sqrt{s} = 5.02$ TeV.

Prompt		
$\mathrm{D^+}/\mathrm{D^0}$	$0.442\pm0.055(stat)\pm0.033(syst)\pm0.008(BR)$	
$\mathrm{D}^+_\mathrm{s}/\mathrm{D}^0$	$0.186 \pm 0.028 (stat) \pm 0.015 (syst) \pm 0.007 (BR)^{+0.051}_{-0.018} (extr)$	
$\mathrm{D}^+_\mathrm{s}/\mathrm{D}^+$	$0.420 \pm 0.078 (stat) \pm 0.041 (syst) \pm 0.017 (BR)^{+0.116}_{-0.040} (extr)$	
$D_{s}^{+}/(D^{0}+D^{+})$	$0.129 \pm 0.020 (stat) \pm 0.010 (syst)^{\pm} 0.005 (BR)^{+0.036}_{-0.012} (extr)$	
Non-prompt		
D^+/D^0	$0.487 \pm 0.090 (stat) \pm 0.055 (syst) \pm 0.009 (BR) ^{+0.007}_{-0.027} (extr)$	
$\mathrm{D}^+_\mathrm{s}/\mathrm{D}^0$	$0.374 \pm 0.071 (stat) \pm 0.041 (syst) \pm 0.014 (BR)^{+0.004}_{-0.016} (extr)$	
$\mathrm{D}^+_\mathrm{s}/\mathrm{D}^+$	$0.769 \pm 0.183(stat) \pm 0.086(syst) \pm 0.030(BR)^{+0.003}_{-0.010}(extr)$	
$D_{s}^{+}/(D^{0}+D^{+})$	$0.252 \pm 0.047(\text{stat}) \pm 0.023(\text{syst}) \pm 0.009(\text{BR})^{+0.001}_{-0.006}(\text{extr})$	

Correction for beauty-quark FF ratio

$$\left(\frac{f_{\rm s}}{f_{\rm u}+f_{\rm d}}\right)_{\rm beauty} = \left[\frac{N({\rm D}_{\rm s}^+ \leftarrow {\rm B}_{\rm s}^0)}{N({\rm D}_{\rm s}^+ \leftarrow {\rm H}_{\rm b})} \cdot \frac{N({\rm D}^0,{\rm D}^+ \leftarrow {\rm H}_{\rm b})}{N({\rm D}^0,{\rm D}^+ \leftarrow {\rm B}^{0,+})}\right]^{\rm FONLL+PYTHIA~8} \cdot \left(\frac{{\rm D}_{\rm s}^+}{{\rm D}^0+{\rm D}^+}\right)_{\rm non-prompt}$$

Extrapolation factor for beauty-quark cross section

$$\alpha_{\text{extr}}^{b\overline{b}} = \frac{d\sigma_{b\overline{b}}/dy|_{|y|<0.5}^{\text{FONLL}}}{\sigma_{b\rightarrow D}^{\text{FONLL+PYTHIA 8}}(p_{\text{T}}^{\text{min}} < p_{\text{T}} < p_{\text{T}}^{\text{max}}, |y| < 0.5)}$$

30/03/2021

Charmed-baryon production in pp at 13 TeV

- Production of Λ_c^+ , Ξ_c^0 , Ξ_c^+ and Σ_c measured in pp collisions at $\sqrt{s} = 13$ TeV using the full Run 2 data sample
- New Ξ⁺_c and Σ_c measurements, improved precision and extended p_T range:
 - better constrain charm-quark total cross section
 - investigate the charmed-baryon hadronisation

$$\begin{split} &\langle d \mathrm{N}_{\mathrm{ch}}/\mathrm{d}\eta\rangle_{|\eta|<1}\sim 3.9\\ &\langle d \mathrm{N}_{\mathrm{ch}}/\mathrm{d}\eta\rangle_{|\eta|<1}\sim 7 \text{ (MB)}\\ &\langle d \mathrm{N}_{\mathrm{ch}}/\mathrm{d}\eta\rangle_{|\eta|<1}\sim 13.7\\ &\langle d \mathrm{N}_{\mathrm{ch}}/\mathrm{d}\eta\rangle_{|\eta|<1}\sim 28.1\\ &\langle d \mathrm{N}_{\mathrm{ch}}/\mathrm{d}\eta\rangle_{|\eta|<1}\sim 44 \end{split}$$

- ▶ Λ_c^+/D^0 ratio higher than what observed in e^+e^- and increasing with multiplicity
 - → indication of recombination in pp?

L. Gladilin: EPJ C75 (2015) 19

ALI-PREL-336414

$\Lambda_{ m c}^+/{ m D}^0$ vs. multiplicity in pp at 13 TeV

ALI-PREL-336426

F. Catalano (PoliTo and INFN)

30/03/2021

Non-prompt D-meson R_{AA}

 Smaller suppression of D⁰ mesons from B than prompt ones at intermediate p_T → described by models

- Hint of mass dependence of in-medium energy loss
 - $\Delta E_{\rm c} > \Delta E_{\rm b}$