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OUTLINE

• Quick reminder of why we are interested in top squarks

• What were the constraints from Run 1?

• Novel tools that could help us find top squarks

• Results from the CMS top squark searches of LHC Run 2

• Closing some holes where the stop could be hiding 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THE STATE OF THE SM
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• After Higgs discovery and Run 1: We know that the SM is 
incomplete, but haven’t found direct evidence for new physics


• Higgs boson behaves as expected - but what stabilizes its 
mass?


• Supersymmetry (SUSY) could provide an answer

2103.04956 

δm2
H = κΛ2

4−10

3−10

2−10

1−10

1νV
m V

κ
 o

r 
νF

m F
κ

Vector bosons
 generation fermions rd3

Muons
SM Higgs boson

µ

τ
b

W Z
t

 (13 TeV)-135.9-137 fb

CMS
 = 125.38 GeVHm

p-value = 44%

1−10 1 10 210
Particle mass (GeV)

0.5

1

1.5

R
at

io
 to

 S
M

https://arxiv.org/abs/2103.04956


CORNERING TOP SQUARKS WITH CMSDANIEL SPITZBART

WHY TOP SQUARKS?
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Lightest neutralino:

Stable, weakly interacting & 
massive → DM candidate

top squark

pair production
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• Light top squark (stop) with mass around the TeV scale well motivated

• Contributions of top quark to loop corrections of Higgs mass cancelled by top 

squark

• Top squark carries color charge → sizable x-sec at LHC


• If R-parity  is conserved → lightest SUSY particle (LSP) stableR = (−1)3B+L+2s

Simplified model of top squark production
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FINDING TOP SQUARKS
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FINDING TOP SQUARKS
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MANY CHALLENGES
• Signal kinematics highly dependent on mass splitting 

of top squark and LSP, 


• Larger Δm → larger pTmiss

Δm = m(t̃1) − m( χ̃0
1)
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Figure 1. Illustration of stop decay modes in the plane spanned by the masses of the stop (t̃1)
and the lightest neutralino (χ̃

0
1), where the latter is assumed to be the lightest supersymmetric

particle. Stop decays to supersymmetric particles other than the lightest supersymmetric particle
are not displayed.

(χ̃
±
1 → W (∗)χ̃0

1). The t̃1 → bχ̃
±
1 decay is considered for a stop mass above around 100GeV

since the LEP limit on the lightest chargino is mχ̃±
1
> 103.5GeV [30].

This article presents a search for direct t̃1 pair production in final states with exactly

one isolated charged lepton (electron or muon,3 henceforth referred to simply as ‘leptons’),

several jets, and a significant amount of missing transverse momentum, the magnitude of

which is referred to as Emiss
T . The lepton arises from the decay of either a real or a virtual

W boson, and the potentially large Emiss
T is generated by the two undetected LSPs and neu-

trino(s). All stop decay modes described above except for the FCNC modes are considered,

as illustrated in figure 2. With several decay modes kinematically available, the t̃1 decay

branching ratio is determined by factors including the stop mixing matrix and the field

content of the neutralino/chargino sector. Results are mainly based on simplified models

that have 100% branching ratio to one or a pair of these specific decay chains. In addition,

phenomenological MSSM (pMSSM) [31] models are used to study the sensitivity to realistic

scenarios where more complex decay chains are present alongside the simpler ones.

Searches for direct t̃1 pair production have previously been reported by the ATLAS [32–

38] and CMS [39–43] collaborations, as well as by the CDF and DØ collaborations (for ex-

ample refs. [44, 45]) and the LEP collaborations [46]. Indirect searches for stops, mediated

by gluino pair production, have been reported by the ATLAS [47–50] and CMS [39, 40, 51–

55] collaborations.

2 Analysis strategy

Searching for t̃1 pair production in the various decay modes and over a wide range of stop

masses requires different analysis approaches. The t̃1 pair production cross-section falls

3Electrons and muons from τ decays are included.
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ample refs. [44, 45]) and the LEP collaborations [46]. Indirect searches for stops, mediated

by gluino pair production, have been reported by the ATLAS [47–50] and CMS [39, 40, 51–

55] collaborations.

2 Analysis strategy

Searching for t̃1 pair production in the various decay modes and over a wide range of stop

masses requires different analysis approaches. The t̃1 pair production cross-section falls

3Electrons and muons from τ decays are included.
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• Signal kinematics highly dependent on mass splitting 
of top squark and LSP, 


• Larger Δm → larger pTmiss

Δm = m(t̃1) − m( χ̃0
1)

https://arxiv.org/abs/1407.0583
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• Signal kinematics highly dependent on mass splitting 
of top squark and LSP, 


• Larger Δm → larger pTmiss

Δm = m(t̃1) − m( χ̃0
1)
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STOPS AFTER RUN 1
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• Run 1 legacy from ~2015, sensitivity to top squark up to ~800 GeV

• So just collect more data at higher energy?
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WHAT HAPPENED?

• Excellent performance of LHC and CMS during Run 2

• Collected 140/fb of proton-proton collision data that’s good for 

physics analysis


• Challenging pileup scenario: <𝜇> = 13 (2015) → 27 (2016) → 38 
(2017/18)
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TOP SQUARK SEARCHES IN CMS
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• 3 independent searches in all hadronic, single lepton and dilepton 
channel


• Different SM backgrounds depending on channel

Experimental signature:

2 b-jets, 2 W bosons, pTmiss
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ALL HADRONIC SEARCH
• Events selected using pTmiss triggers

• Inclusive analysis design for sensitivity 

to many signal scenarios

• Low Δm:

• ISR jet candidate to boost ttbar 

system and increase pTmiss


• High Δm:

• Boosted top and W quarks → 

dedicated ML aided taggers
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ēb1

q

g
q

g

b̄

e�01

e�01
b

ISR jet
low pT 
objects

low Δm 
signal

high Δm 
signal p

p t̃1

t̃1

t

χ̃
0
1

χ̃
0
1

t

high pT top/
W

2103.01290

https://arxiv.org/abs/2103.01290


CORNERING TOP SQUARKS WITH CMSDANIEL SPITZBART

LOW ΔM: SOFT OBJECTS

• Usual case: Identify jets 
originating from b quarks with ML 
based taggers → b-tagged jets


• Low Δm signals produce very 
soft b quarks

• Often too soft for standard b-

tagging algorithms

• Directly use secondary vertex 

reconstructed with inclusive vertex 
finder algorithm
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HIGH ΔM: BOOSTED OBJECTS
• Quick reminder: CMS uses anti-kT algorithm to cluster particles (particle flow 

candidates) into jets with different cone sizes

• Most commonly used: R=0.4 → AK4 jet, R=0.8 → AK8 jet


• ΔR of decay products of heavy resonance, e.g. top quark, with sizable 

momentum: 


• Large mass splitting between top squark and LSP → boosted top quarks

ΔR ∼
2M
pT
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(BOOSTED) OBJECT TAGGING
• DNN based multi-classifier for large cone jets (AK8)

• Takes PF candidates (42 features each) and secondary vertices (15 features) 

as input

• Score for top, W, Z, Higgs, QCD jets

• Here: Only top quark or W boson vs QCD jet tagging (merged top/W)


• Resolved top tagger: DNN tagger based on high level information of triplets of 
AK4 jets 
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ALL HADRONIC SIGNAL REGIONS

• Design 183 signal regions, optimized for different signal scenarios

• Low Δm signal regions:

• Binned in jet multiplicity (Njets), b-tagged or soft-b multiplicity (Nb, 

NSV)

• Either inclusive in mTb or mTb<175 GeV

• ISR jet pT, b-jet candidate pT, pTmiss


• High Δm signal regions:

• Binned in Njets, Nb, merged top or W tag multiplicity, resolved top 

multiplicity

• Hadronic activity, pTmiss, mTb

17
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CANDIDATE EVENT
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LOST LEPTON BACKGROUND
• Largest background in most signal regions: single lepton tt+jets, single 

top, W+jets events with lost lepton (LL)

• Estimate based on measurement in single lepton data control sample

• Extrapolate to search region with transfer factor TFLL from simulation

• LL background greatly reduced in regions requiring merged/resolved top 

or W

19
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Figure 5.14: Diagram of a semi-leptonic tt̄ + jets event. The first W boson decays to
a quark jet pair, while the second one decays to a lepton (electron or muon) and the
corresponding neutrino.
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Two correction factors are defined to account for residual di↵erences between RCS from

the sideband and the mainband regions. First, the potential di↵erence between RCS

determined in a bin requiring one b-tagged jet and the true RCS with no b-tagged jet is

calculated in simulation, called b:

b =
RMC

CS (0b, njet 2 [4, 5], tt̄)

RMC
CS (1b, njet 2 [4, 5], EWK)

. (5.7)

b also covers for small contributions from events other than tt̄+jets and QCD multijets.
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Two correction factors are defined to account for residual di↵erences between RCS from

the sideband and the mainband regions. First, the potential di↵erence between RCS

determined in a bin requiring one b-tagged jet and the true RCS with no b-tagged jet is

calculated in simulation, called b:

b =
RMC

CS (0b, njet 2 [4, 5], tt̄)

RMC
CS (1b, njet 2 [4, 5], EWK)

. (5.7)

b also covers for small contributions from events other than tt̄+jets and QCD multijets.
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CORNERING TOP SQUARKS WITH CMSDANIEL SPITZBART

RESULTS
• Showing subset of high Δm signal regions

• Lost lepton background dominating in these signal regions

• Background predictions validated in orthogonal validation regions


• No statistically significant excess
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CORNERING TOP SQUARKS WITH CMSDANIEL SPITZBART

SINGLE LEPTON SEARCH
• 30% signal branching fraction, events selected with pTmiss  or single 

lepton triggers 

• Use of kinematic mass variables (MT, Mlb) together with novel 

machine learning tools (merged and resolved top tagger)

• Retain sensitivity to low Δm signal points with soft b-tagger

• Dominant background: lost lepton from dilepton ttbar events
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BACKGROUND ESTIMATES
• Main backgrounds estimated using data control samples

• Lost lepton background normalization measured in dilepton sample

• W+jets background estimated from a sample vetoing b-tagged jets

• Transfer factors to obtain background prediction in signal regions
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CORNERING TOP SQUARKS WITH CMSDANIEL SPITZBART

SINGLE LEPTON RESULTS
• Numerous signal regions categorized in jet multiplicity, Mlb, modified 

topness, pTmiss

• Additional untagged/resolved/merged top tag regions for highly 

boosted top quarks

• No statistically significant excess

23

16

the signal acceptance. The effect is small in most search regions, but can be noticeable in signal398

scenarios with a compressed mass spectrum.399

The effect of the uncertainty in the jet energy scale is 1–34% in the estimated backgrounds and400

up to 24% in the signal acceptance. Variations in the efficiency of the b jet and soft b object401

identification typically affect the estimated signal and background yields by 0.1% and 3%, with402

a full range up to 10%.403

The uncertainty in the cross section of W + jets events with jets containing b quarks is an im-404

portant source of uncertainty in the estimation of the W + jets background. A comparison of405

the multiplicity of b-tagged jets between data and simulation is performed in a W + jets en-406

riched control sample obtained with the same selection as for the M`b validation test, with the407

additional requirement of pmiss
T > 250 GeV. From this study, we estimate a 50% uncertainty408

in the W + b(b) cross section resulting in a 20–40% uncertainty in the W + jets background409

estimate.410

7 Results and interpretation411

The event yields and the SM predictions in the search regions are summarized in Tables 7412

and 8. These results are also illustrated in Fig. 5. The observed yields are consistent with the413

estimated SM backgrounds. Isolated fluctuations are observed in a few signal region bins. The414

data events in these signal region bins were inspected carefully to determine if any detector or415

reconstruction effects were the source of the high pmiss
T . No such issues were detected.416
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Results are interpreted in the context of top squark pair production models described in Sec-417

tion 1. For a given model, 95% confidence level (CL) upper limits on the production cross418

sections are derived as a function of the mass of the SUSY particles. The search regions are419

combined using a modified frequentist approach, employing the CLs criterion and an asymp-420

totic formulation [95–98]. The likelihood function is constructed by multiplying the probability421

density functions from each search region. These probability density functions are products422

of Poisson functions for the control region yields and log-normal constraint functions for the423
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DILEPTON SEARCH

24

• Small signal branching fraction, but clean 
dilepton final state


• Events selected using dilepton triggers

• Overwhelming Drell-Yan (Z→ll) background 

reduced using pTmiss significance

• Proven to be more stable under varying 

pileup conditions compared to “pure” 
pTmiss
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TOP QUARK BACKGROUND

• Largest remaining reducible 
background is coming from top 
quark pairs


• Stransverse mass MT2(ll) has 
endpoint around W boson mass 
for leptonically decaying top quark 
pairs

• Not respected by events with 

severe jet mismeasurements or 
lost and fake lepton


• No endpoint for some rare tt+X 
and diboson processes
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DILEPTON RESULTS
• Signal regions defined in bins of pTmiss significance and stransverse 

mass variables

• In-situ measurements of the normalizations of leading backgrounds: 

tt/single-t, Drell-Yan and multiboson, tt+Z

• Very good agreement of observation with predictions from SM
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WHAT ABOUT LIGHT STOPS?
• If Δm between top squark and LSP is close 

to top quark mass → kinematics of signal 
and ttbar background very similar

• Take special care of top corridor!

• Standard background estimation 

techniques break down

• Large SUSY scan uses fast detector 

simulation for feasibility to generate 
O(100M) events per signal model and 
year


• CMS kept top corridor blinded in 
previous top squark publications


• A dedicated search in the dilepton channel 
was designed to only target this region
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Figure 1. Illustration of stop decay modes in the plane spanned by the masses of the stop (t̃1)
and the lightest neutralino (χ̃

0
1), where the latter is assumed to be the lightest supersymmetric

particle. Stop decays to supersymmetric particles other than the lightest supersymmetric particle
are not displayed.

(χ̃
±
1 → W (∗)χ̃0

1). The t̃1 → bχ̃
±
1 decay is considered for a stop mass above around 100GeV

since the LEP limit on the lightest chargino is mχ̃±
1
> 103.5GeV [30].

This article presents a search for direct t̃1 pair production in final states with exactly

one isolated charged lepton (electron or muon,3 henceforth referred to simply as ‘leptons’),

several jets, and a significant amount of missing transverse momentum, the magnitude of

which is referred to as Emiss
T . The lepton arises from the decay of either a real or a virtual

W boson, and the potentially large Emiss
T is generated by the two undetected LSPs and neu-

trino(s). All stop decay modes described above except for the FCNC modes are considered,

as illustrated in figure 2. With several decay modes kinematically available, the t̃1 decay

branching ratio is determined by factors including the stop mixing matrix and the field

content of the neutralino/chargino sector. Results are mainly based on simplified models

that have 100% branching ratio to one or a pair of these specific decay chains. In addition,

phenomenological MSSM (pMSSM) [31] models are used to study the sensitivity to realistic

scenarios where more complex decay chains are present alongside the simpler ones.

Searches for direct t̃1 pair production have previously been reported by the ATLAS [32–

38] and CMS [39–43] collaborations, as well as by the CDF and DØ collaborations (for ex-

ample refs. [44, 45]) and the LEP collaborations [46]. Indirect searches for stops, mediated

by gluino pair production, have been reported by the ATLAS [47–50] and CMS [39, 40, 51–

55] collaborations.

2 Analysis strategy

Searching for t̃1 pair production in the various decay modes and over a wide range of stop

masses requires different analysis approaches. The t̃1 pair production cross-section falls

3Electrons and muons from τ decays are included.
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KINEMATICS
• Degenerate case with m(stop) = 175 GeV, m(LSP) = 1GeV maximally 

similar to SM

• Sensitivity only through measurement of the ttbar x-sec


• Small kinematic differences for other points, e.g. pTmiss, MT2(ll)

• Fully exploited by using parametric DNN: stop and LSP mass are fed to 

NN → optimized model for each signal mass point
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PARAMETRIC DNN RESULTS
• 11 variables used as inputs additional to the stop and LSP mass

• Parametric DNN leads to mass-point dependent background shapes

• Good discriminating power of the DNN over the full range of signal 

models

• No significant excess observed
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PUTTING THE PIECES TOGETHER

• Right from the beginning of 
legacy Run 2 stop searches: 
Coordinate the different 
searches to avoid overlap of 
signal and control regions


• Individual searches rely on 
orthogonal control samples to 
estimate backgrounds, e.g. 
lost lepton


• Carefully examine correlation 
patterns of all systematic 
uncertainties
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COMBINED RESULTS
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COMBINED RESULTS: CORRIDOR
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• Corridor not fully excluded 
in previous dedicated 
searches

• Numerous improvements, way 
beyond the larger data sets, have 
led to ever tighter constraints on 
top squark pair production
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ADDITIONAL SIGNAL MODELS
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• Models with intermediate chargino in top squark decay chain
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ADDITIONAL SIGNAL MODELS
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• Signal models with Δm < mW


• Decays of top squarks via off-shell top quarks or W bosons
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INCLUSIVE SEARCHES
• Searches are designed to be inclusive

• Other signal models produce similar final states, e.g. 

mediated dark matter production in association with ttbar: 
pp→ttχχ


• Assumes scalar/pseudoscalar mediator with couplings 
similar to SM Higgs boson

• Currently best limits for this model
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WHAT IF …?
• What if R-parity is violated (RPV SUSY)?

• Searches are inclusive but rely on pTmiss  → not present if LSP decays 

back into stable SM particles

• E.g. through interaction terms that do not conserve B or L, decay 

via off-shell squark


• Couplings:  with i, j, k corresponding to generation of quarksλ′￼′￼ijk
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WHAT IF …?
• Several ways to end up with low pTmiss, not just previous RPV model


• Another example: R-parity conserving SUSY with Stealth sector, 
coupled to MSSM via portal


• Small mass splitting between superpartners in stealth sector
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n�1)
! � factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:
Z

d
4
�

(2⇡)4
✏1µ (2�

µ + k
µ
1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(�2 � m2)((� + k1)2 � m2)
. (1)

1

Figure 1: A schematic of the sectors involved in a general stealth model. Flavor-blind mediation
gives rise to standard MSSM soft SUSY-breaking terms, but the soft terms in the stealth sector are
suppressed relative to this. The MSSM and the stealth sector are weakly coupled, and the size of soft
terms in the stealth sector is suppressed relative to the supersymmetric mass scale of the stealth sector
by a weak-coupling factor.

as the splittings are su�ciently small and the typical multiplicity is low, SUSY can still be

hidden at colliders.)

2.2 Stealth SUSY Is Not Compressed SUSY

It is well-known that, for standard gravity-mediated MSSM spectra, collider signals are more

di�cult to observe as the masses are compressed. For instance, a gluino decaying to a bino

and two quarks, g̃ ! qq̄B̃, is most constrained if the bino is nearly massless, in which case

a significant fraction of the gluino’s energy goes into invisible momentum from the bino. As

the mass splitting is reduced, the typical missing energy in the event is reduced, and limits

from LHC searches grow weaker. Recent discussions of limits on compressed scenarios can

be found in [22]. Superficially, stealth SUSY might sound like a special case of compressed

SUSY: mass splittings are small, missing ET is reduced, and limits are weaker. However,

there is a crucial kinematic di↵erence, associated with the fact that in standard compressed

SUSY, the invisible particle is a heavy decay product, whereas in stealth SUSY the invisible

particle is very light. This ensures that the reduced missing ET of stealth SUSY is much

more robust against e↵ects like initial state radiation.

To clarify this di↵erence, we will review some basic relativistic kinematics and rules-of-

thumb for hadron collider physics. First, consider the decay of a heavy particle of mass M to

a particle of mass m = M � �M and a massless particle. In the rest frame, the momentum

– 4 –

Stop SYY simplified model

We take the singlino to be slightly heavier than the singlet. Thus the singlino will decay 100% of the
time to singlet and the invisible fermion, which is the lightest superparticle in the spectrum.

2.2 Decays of the LOSP
We assume a relatively small coupling between the visible sector and the stealth sector, so that all visible
superpartners rapidly cascade down to the LOSP, which then decays to the stealth sector. The decays that
we obtain depend on the choice of SHu Hd or SYY as the dominant interaction between the sectors. Further
detailed descriptions of decay widths (including the relevant natural SUSY widths for transitions between
SM superpartners) may be found in Appendix A. We list the decays of different possibilities of LOSP in
either the SHuHd or SYY model in Figure 1. In the SHu Hd model, the decays of the LOSP to singlino
always go through mixing between the singlino and a Higgsino (represented by the crosses in the figure).
In the SYY model, the couplings between the LOSP and the stealth singlet are generated via a loop of Y
and Y messengers. Thus the decays of LOSP into the stealth sector proceed through the loops represented
by the blue blobs in the figure.
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Figure 1: All possible LOSP decays we consider in the stealth simplified models. The crosses on the singlino legs in
the SHu Hd models represent a mixing between singlino and Higgsino. The red blob in the gluino LOSP decay in the
SHu Hd model represents an off-shell stop. The blue blobs in all the LOSP decays in the SYY model represent a loop of
Y, Y messengers.

We have drawn all of the Higgsino states decaying to the singlino in Figure 1, treating the whole mul-

4

Portal loop
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SEARCH FOR RPV/STEALTH STOPS
• Final state: tt+jets

• Select events with single lepton to suppress QCD multijet production


• Most distinct feature: jet multiplicity Njets → difficult to model

• Parametrize Njets with jet scaling function R(i) which can be well modeled by 

functional form
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Figure 2. Jet ratios R(n+1)/n in e+e� ! jets production at 2 TeV center-of-mass energy. We show
a Poisson fit with n̄ = 8.7 and a staircase fit to the tail. We use Sherpa [33, 48] with the g ! qq̄
shower splittings switched o↵.

Neglecting the e↵ects of the running coupling, �̃g(Q2) is a Sudakov form factor. Including

the running coupling, Eq. (2.18) di↵ers from the standard Sudakov in Eq. (2.1) starting at

higher orders,
�̃g(Q2)

�g(Q2)
= exp

✓
�

↵2
s

12⇡
b0 log3

Q2

Q2
0

◆
. (2.19)

Taking derivatives of the generating functional in Eq. (2.18) at u = 0 we can compute the

exclusive jet rates

Pn�1 = �̃g(Q
2)
⇣
1� �̃g(Q

2)
⌘
n�1

or R(n+1)/n = 1� �̃g(Q
2) . (2.20)

These constant ratios define a staircase pattern. Comparing Eq. (2.11) and Eq. (2.20)

we see that in two distinct phase space regimes we find two clear scaling patterns for the

Yang-Mills or pure gluon case. Both of them can arise in final state gluon radiation, which

means they should in principle be observable in e+e� ! jets events.

The all-order theoretical predictions for Poisson scaling, Eq. (2.11), and staircase scal-

ing, Eq. (2.20), we can compare to simulated e+e� ! jets events. To cover both, a large

scale separation Q � Q0 as well as a democratic scale Q ⇠ Q0, we use a large center-

of-mass energy of 2 TeV and a very small lower cuto↵ ycut = 5 · 10�7 for the Durham

jet-reconstruction algorithm [47]. In Fig. 2 we show jet ratios R(n+1)/n for a large range

of n. Indeed, we observe Poisson as well as staircase scaling. The same behavior is known

from hadron colliders for example in pp ! �+jets production [8]: for relatively low n values

the emission is dominated by large scale di↵erences, inducing a Poisson pattern. For large

jet multiplicity individual emissions are not a↵ected by a large scale di↵erence, so we see

– 11 –
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NEURAL NETWORK VS SM TT+JETS
• Event shape and kinematic variables used in a NN, score SNN

• SNN correlated with Njets


• Gradient reversal is used to decorrelate SNN and Njets


• Allows to use Njets spectrum in the signal extraction fit in 4 bins of 
SNN
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DNN TRAINING AND RESPONSE

• NN training done on mix of signal 
models with m(stop) 350-850 GeV


• Agreement of data and simulation 
within uncertainty 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RESULTS
• Fits of functional form describing Njets to 

data

• Using 4 SNN bins in 4 data taking eras


• Agreement of background only fit in 
combined SNN bins and years


• Similar agreement in individual regions / 
eras
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INTERPRETATIONS

• Results interpreted in RPV and stealth SUSY model as function of 
m(stop)


• Largest local significances of 2.8σ for RPV model with m(stop) = 
400 GeV, 2.5σ for stealth SUSY with m(stop) = 350 GeV
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CONCLUSIONS

• New developments in search strategies 
and tools have greatly improved the 
constraints on top squarks

• Boosted object tagging, soft b-

tagging, pTmiss significance, …

• Dedicated top corridor search 

allows to also constrain very 
particular region of parameter space


• From 800 GeV in m(stop) in Run 1 
to above 1300 GeV


• Novel search for RPV and stealth top 
squarks exhibits excellent sensitivity to 
previously uncovered signal scenarios
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BACKUP
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SUPERSYMMETRY
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STOPS AT THE BEGINNING OF RUN 2

47

• Simplified model assuming R parity conservation: top 
squark pair production, prompt decay to a top quark 
and the stable lightest neutralino (LSP) → two 
parameters to scan


• Different challenges depending on Δm between the 
particles
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SIGNAL REGIONS ALL HADRONIC

48

m
b
T [GeV] Nj Nb Nt NW Nres HT [GeV] p

miss
T [GeV] Bin number

<175 �7 1 �0 �0 �1 >300 [250, 300, 400, 500, •] 53–56
<175 �7 �2 �0 �0 �1 >300 [250, 300, 400, 500, •] 57–60
>175 �5 1 0 0 0 >1000 [250, 350, 450, 550, •] 61–64
>175 �5 �2 0 0 0 >1000 [250, 350, 450, 550, •] 65–68
>175 �5 1 �1 0 0 300–1000 [250, 550, 650, •] 69–71
>175 �5 1 �1 0 0 1000–1500 [250, 550, 650, •] 72–74
>175 �5 1 �1 0 0 >1500 [250, 550, 650, •] 75–77
>175 �5 1 0 �1 0 300–1300 [250, 350, 450, •] 78–80
>175 �5 1 0 �1 0 >1300 [250, 350, 450, •] 81–83
>175 �5 1 0 0 �1 300–1000 [250, 350, 450, 550, 650, •] 84–88
>175 �5 1 0 0 �1 1000–1500 [250, 350, 450, 550, 650, •] 89–93
>175 �5 1 0 0 �1 >1500 [250, 350, 450, 550, 650, •] 94–98
>175 �5 1 �1 �1 0 >300 [250, 550, •] 99–100
>175 �5 1 �1 0 �1 >300 [250, 550, •] 101–102
>175 �5 1 0 �1 �1 >300 [250, 550, •] 103–104
>175 �5 2 1 0 0 300–1000 [250, 550, 650, •] 105–107
>175 �5 2 1 0 0 1000–1500 [250, 550, 650, •] 108–110
>175 �5 2 1 0 0 >1500 [250, 550, 650, •] 111–113
>175 �5 2 0 1 0 300–1300 [250, 350, 450, •] 114–116
>175 �5 2 0 1 0 >1300 [250, 350, 450, •] 117–119
>175 �5 2 0 0 1 300–1000 [250, 350, 450, 550, 650, •] 120–124
>175 �5 2 0 0 1 1000–1500 [250, 350, 450, 550, 650, •] 125–129
>175 �5 2 0 0 1 >1500 [250, 350, 450, 550, 650, •] 130–134
>175 �5 2 1 1 0 >300 [250, 550, •] 135–136
>175 �5 2 1 0 1 300–1300 [250, 350, 450, •] 137–139
>175 �5 2 1 0 1 >1300 [250, 350, 450, •] 140–142
>175 �5 2 0 1 1 >300 [250, 550, •] 143–144
>175 �5 2 2 0 0 >300 [250, 450, •] 145–146
>175 �5 2 0 2 0 >300 >250 147
>175 �5 2 0 0 2 300–1300 [250, 450, •] 148–149
>175 �5 2 0 0 2 >1300 [250, 450, •] 150–151
>175 �5 2 Nt + NW + Nres � 3 >300 >250 152
>175 �5 �3 1 0 0 300–1000 [250, 350, 550, •] 153–155
>175 �5 �3 1 0 0 1000–1500 [250, 350, 550, •] 156–158
>175 �5 �3 1 0 0 >1500 [250, 350, 550, •] 159–161
>175 �5 �3 0 1 0 >300 [250, 350, 550, •] 162–164
>175 �5 �3 0 0 1 300–1000 [250, 350, 550, •] 165–167
>175 �5 �3 0 0 1 1000–1500 [250, 350, 550, •] 168–170
>175 �5 �3 0 0 1 >1500 [250, 350, 550, •] 171–173
>175 �5 �3 1 1 0 >300 >250 174
>175 �5 �3 1 0 1 >300 [250, 350, •] 175–176
>175 �5 �3 0 1 1 >300 >250 177
>175 �5 �3 2 0 0 >300 >250 178
>175 �5 �3 0 2 0 >300 >250 179
>175 �5 �3 0 0 2 >300 [250, 350, •] 180–181
>175 �5 �3 Nt + NW + Nres � 3 >300 >250 182
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VALIDATION
• Background estimates validated in dedicated signal depleted 

samples orthogonal to signal regions

• Kinematically similar to signal regions


• Inverting separation requirement of jets and pTmiss
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CANDIDATE EVENTS

50
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AK4 jets

Merged top

M=176 GeV

Merged top

M=155 GeV



CORNERING TOP SQUARKS WITH CMSDANIEL SPITZBART

Z→INV BACKGROUND

• Z→νν events have large genuine pTmiss 

• Two data control samples used to estimate Z→νν background

• Z→ll to extract normalization factor RZ

• γ+jets for shape correction factor Sγ

51

20

10

210

310

410

510

610

710

E
ve

n
ts

/b
in

 (13 TeV)-1137.0 fb

CMS Data

tt

W+jets

Single t

Xtt

Multiboson

Bkg. uncertainty

300 400 500 600 700 800 900 ∞

 [GeV]
T

missp

0.5

1

1.5

si
m

/N
o
b
s

N

LL control region
m∆High 

10

210

310

410

510

610

710

810

910

E
ve

n
ts

 (13 TeV)-1137.0 fb

CMS Data

tt

W+jets

Single t

Xtt

Multiboson

Bkg. uncertainty

0 1 2+

tN

0.5

1

1.5

si
m

/N
o
b
s

N

LL control region
m∆High 

10

210

310

410

510

610

710

810

E
ve

n
ts

 (13 TeV)-1137.0 fb

CMS Data

tt

W+jets

Single t

Xtt

Multiboson

Bkg. uncertainty

0 1 2+

WN

0.5

1

1.5

si
m

/N
o
b
s

N

LL control region
m∆High 

10

210

310

410

510

610

710

810

910

E
ve

n
ts

 (13 TeV)-1137.0 fb

CMS Data

tt

W+jets

Single t

Xtt

Multiboson

Bkg. uncertainty

0 1 2+

resN

0.8

1

1.2

si
m

/N
o
b
s

N

LL control region
m∆High 

Figure 4: Comparison between data and simulation in the high Dm portion of the ` + jets
control region, as a function of pmiss

T (upper left), Nt (upper right), NW (lower left), and Nres
(lower right) after scaling the simulation to match the total yield in data. The hatched region
indicates the total shape uncertainty in the simulation. The lower panels display the ratios
between the observed data and the simulation.

Z boson decays to `+`�. The g + jets control region requires a single reconstructed photon and
is therefore enriched in g + jets events.

The predicted yield of Z(nn) + jets is

NZ(nn )+jets
pred = RZSg NZ(nn )+jets

MC ,

where NZ(nn )+jets
pred and NZ(nn )+jets

MC are respectively the predicted number of Z(nn) + jets events
and the number of simulated Z(nn) + jets events in each search bin, RZ is a flavor-dependent
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SINGLE LEPTON SEARCH

52

Label Nj tmod

M`b ttagging pmiss

T
bins [GeV]

[GeV] category

A0

2–3 >10 175

— [600, 750, +•]

A1 U [350, 450, 600]

A2 M [250, 600]

B 2–3 >10 >175 — [250, 450, 700, +•]

C �4 0 175 — [350, 450, 550, 650, 800, +•]

D �4 0 >175 — [250, 350, 450, 600, +•]

E0

�4 0–10 175

— [450, 600, +•]

E1 U [250, 350, 450]

E2 M [250, 350, 450]

E3 R [250, 350, 450]

F �4 0–10 >175 — [250, 350, 450, +•]

G0

�4 >10 175

— [450, 550, 750, +•]

G1 U [250, 350, 450]

G2 M [250, 350, 450]

G3 R [250, 350, 450]

H �4 >10 >175 — [250, 500, +•]
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SINGLE LEPTON SEARCH

53

Source Signal Lost lepton 1` (not from t) Z ! nn̄
Data statistical uncertainty — 5–50% 4–30% —
Simulation statistical uncertainty 6–36% 3–68% 5–70% 4–41%
tt pmiss

T modeling — 3–50% — —
Signal pmiss

T modeling 1–25% — — —
QCD scales 1–5% 0–3% 2–5% 1–40%
Parton distribution — 0–4% 1–8% 1–12%
Pileup 1–5% 1–8% 0–5% 0–7%
Luminosity 2.3–2.5% — — 2.3–2.5%
W + b(b) cross section — — 20–40% —
ttZ cross section — — — 5–10%
System recoil (ISR) 1–13% 0–3% — —
Jet energy scale 2–24% 1–16% 1–34% 1–28%
pmiss

T resolution — 1–10% 1–5% —
Trigger 2–3% 1–3% — 2–3%
Lepton efficiency 3–4% 2–12% — 1–2%
Merged t tagging efficiency 3–6% — — 5–10%
Resolved t tagging efficiency 5–6% — — 3–5%
b tagging efficiency 0–2% 0–1% 1–7% 1–10%
Soft b tagging efficiency 2–3% 0–1% 0–1% 0–5%
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MODIFIED TOPNESS

54
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STOP SEARCH IN DILEPTONS

• Top quark pair production (ttbar) can 
result in final state with two leptons 
and two neutrinos → genuine pTmiss


• Exploit fact that leptons and 
neutrinos come from W bosons

• Transverse mass MT2(ll)


• In a perfect world, ttbar events 
contained in MT2(ll)<MW region


• Several detector effects can promote 
events over this threshold

• Extensive studies conducted 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The main search variable in this analysis is [20, 93]

MT2(``) = min
~p miss

T
1+~p miss

T
2=~p miss

T

⇣
max

h
MT(~p

vis1
T ,~pmiss

T
1), MT(~p

vis2
T ,~pmiss

T
2)
i⌘

, (1)

where the choice ~pvis1,2
T = ~p`1,2

T corresponds to the definition introduced in Ref. [94]. The al-
ternative choice ~pvis1,2

T = ~p`1,2
T + ~pb1,2

T involves the b-tagged jets and defines MT2(b`b`). If
only one b-tagged jet is found in the event, the jet with the highest pT that does not pass the
b tagging selection is taken instead. The calculation of MT2(``) and MT2(b`b`) is performed
through the algorithm discussed in Ref. [95], assuming vanishing mass for the undetected par-
ticles, and follows the description in Ref. [37]. The key feature of the MT2(``) and MT2(b`b`)
observables is that they retain a kinematic endpoint, even in the presence of two neutrinos, for
background events from the leptonic decays of two W bosons, produced directly or through
top quark decay respectively. In turn, signal events from the processes depicted in Fig. 1 do not
respect the endpoint and are expected to populate the tails of these distributions.

Signal regions based on MT2(``), MT2(b`b`) and S are defined to enhance sensitivity to dif-
ferent signal scenarios, and are listed in Table 3. The regions are further divided into different
categories based on SF or DF lepton pairs, accounting for the different SM background compo-
sition. The signal regions are defined so that there is no overlap between them, nor with the
background-enriched control regions.

Table 3: Definition of the signal regions. The regions are further split into SF and DF regions.
The preselection in Table 2 is applied to all regions.

MT2(b`b`) (GeV) S 100 < MT2(``) < 140 GeV 140 < MT2(``) < 240 GeV MT2(``) > 240 GeV

0–100 12–50 SR0 SR6

SR12

>50 SR1 SR7

100–200 12–50 SR2 SR8
>50 SR3 SR9

>200 12–50 SR4 SR10
>50 SR5 SR11

6 Background predictions

Events with an opposite-charge lepton pair are abundantly produced by Drell–Yan and tt pro-
cesses. The event selection discussed in Section 4 efficiently rejects the vast majority of Drell–
Yan events. Therefore, the major backgrounds from SM processes in the search regions are t/tt
events that pass the MT2(``) threshold because of severely mismeasured p

miss
T or a misidenti-

fied lepton. In signal regions with large MT2(``) and S requirements, ttZ events with Z ! nn
are the main SM background. Remaining Drell–Yan events with large p

miss
T from mismeasure-

ment, multiboson production and tt/single t processes in association with a W, a Z or a Higgs
boson (ttW, tqZ or ttH) are sources of smaller contributions. The background estimation pro-
cedures and their corresponding control regions, listed in Table 4, are discussed in the follow-
ing.

6.1 Top quark background

Events from the tt process are contained in the MT2(``) < 100 GeV region, as long as the jets
and leptons in each event are identified and their momenta are precisely measured. Three main
sources are identified that promote tt events into the tail of the MT2(``) distribution. Firstly, the
jet momentum resolution is approximately Gaussian [96] and jet mismeasurements propagate

MW
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DILEPTON SEARCH
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Name Definition

TTCRSF MT2(``) < 100 GeV, SF leptons, |m(``)� mZ| > 15 GeV
TTCRDF MT2(``) < 100 GeV, DF leptons
TTZ2j2b Njets = 2, Nb � 2
TTZ3j1b N` = 3, S � 0, � 1 SF lepton pair Njets = 3, Nb = 1
TTZ3j2b with |m(``)� mZ| < 10 GeV Njets = 3, Nb � 2
TTZ4j1b Njets � 4, Nb = 1
TTZ4j2b Njets � 4, Nb � 2

CR0-CR12
Same as SR0-SR12 in Table ??,
but SF leptons, |m(``)� mZ| < 15 GeV and Nb = 0

MT2(b`b`) (GeV) S 100 < MT2(``) < 140 GeV 140 < MT2(``) < 240 GeV MT2(``) > 240 GeV

0–100 12–50 SR0 SR6

SR12

>50 SR1 SR7

100–200 12–50 SR2 SR8
>50 SR3 SR9

>200 12–50 SR4 SR10
>50 SR5 SR11

Systematic uncertainty Typical (%) Max (%)

Integrated luminosity 2 2

Pileup modeling 5 7

Jet energy scale 4 20

Jet energy resolution 3 4

btagging efficiency 2 3

btagging mistag rate 1 7

Trigger efficiency 1 2

Lepton identification efficiency 3 5

Modeling of unclustered energy 3 7

Non-Gaussian jet mismeasurements 6 6

Misidentified or nonprompt leptons 5 5

tt normalization 9 9

ttZ normalization 10 14

Multiboson background normalization 4 8

ttH/Wbackground normalization 5 8

Drell–Yan normalization 3 8

Parton distribution functions 2 4

µR and µF choice 7 11
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DILEPTON SEARCH
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T8BBLLNUNU
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CORRIDOR SEARCH
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Source Average for tt (%)
PDFs and aS (acceptance) 1.0
µF, µR scales (acceptance) 3.8
Initial-state radiation 0.6
Final-state radiation 3.4
Top pT 1.3
Matrix element/parton shower matching 2
Underlying event 1.5
Top mass (acceptance) 1.5

Source Uncertainties (%)
tt signal

Muon efficiencies 0.5
Electron efficiencies 1.5
Trigger modeling 1.2
Muon energy scale 1.4
b-tagging efficiency 3
Jet energy resolution 16 7.0
Jet energy scale 7.5 5.7
Unclustered energy 4.2 5.0
Pileup modeling 3.2 1.5
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SEARCH FOR RPV/STEALTH STOPS
• Final state: tt+jets

• Select events with single lepton to suppress QCD


• Most distinct feature: jet multiplicity Njets → difficult to model

• Parametrize Njets with jet scaling function R(i)

• Ratio can be well modeled by functional form
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Figure 2. Jet ratios R(n+1)/n in e+e� ! jets production at 2 TeV center-of-mass energy. We show
a Poisson fit with n̄ = 8.7 and a staircase fit to the tail. We use Sherpa [33, 48] with the g ! qq̄
shower splittings switched o↵.

Neglecting the e↵ects of the running coupling, �̃g(Q2) is a Sudakov form factor. Including

the running coupling, Eq. (2.18) di↵ers from the standard Sudakov in Eq. (2.1) starting at

higher orders,
�̃g(Q2)

�g(Q2)
= exp

✓
�

↵2
s

12⇡
b0 log3

Q2

Q2
0

◆
. (2.19)

Taking derivatives of the generating functional in Eq. (2.18) at u = 0 we can compute the

exclusive jet rates

Pn�1 = �̃g(Q
2)
⇣
1� �̃g(Q

2)
⌘
n�1

or R(n+1)/n = 1� �̃g(Q
2) . (2.20)

These constant ratios define a staircase pattern. Comparing Eq. (2.11) and Eq. (2.20)

we see that in two distinct phase space regimes we find two clear scaling patterns for the

Yang-Mills or pure gluon case. Both of them can arise in final state gluon radiation, which

means they should in principle be observable in e+e� ! jets events.

The all-order theoretical predictions for Poisson scaling, Eq. (2.11), and staircase scal-

ing, Eq. (2.20), we can compare to simulated e+e� ! jets events. To cover both, a large

scale separation Q � Q0 as well as a democratic scale Q ⇠ Q0, we use a large center-

of-mass energy of 2 TeV and a very small lower cuto↵ ycut = 5 · 10�7 for the Durham

jet-reconstruction algorithm [47]. In Fig. 2 we show jet ratios R(n+1)/n for a large range

of n. Indeed, we observe Poisson as well as staircase scaling. The same behavior is known

from hadron colliders for example in pp ! �+jets production [8]: for relatively low n values

the emission is dominated by large scale di↵erences, inducing a Poisson pattern. For large

jet multiplicity individual emissions are not a↵ected by a large scale di↵erence, so we see

– 11 –

1208.3676

R(i) =
Mi+1

Mi

number of 
events with 

Njets=i 

a0 = f(7), a1 = f(9), a2 = lim
i→∞

f(i)

Mj
i = Yj

7Π
i−1
k=7 f(k)

f(i) = a2 + (a1 − a2)i−7

(a0 − a2)i−9

1/2

with

Njets distribution in each SNN,j bin 
given by recursive expression, with 
free parameter Y7j

https://arxiv.org/abs/1208.3676


CORNERING TOP SQUARKS WITH CMSDANIEL SPITZBART

NEURAL NETWORK VS SM TT+JETS
• Feed event shape and kinematic variables 

into a NN producing score SNN

• Problem: SNN correlated with Njets


• SNN of tt+jets with high Njets more signal like

• Gradient reversal is used to decorrelate 

DNN response SNN and Njets


• Allows to use Njets spectrum in the signal 
extraction fit in 4 bins of SNN
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DECOUPLING DNN FROM NJETS 
• SNN of tt+jets with high Njets more 

signal like

• Gradient reversal is used to 

decorrelate DNN response SNN and 
Njets


• Allows to use Njets spectrum in the 
signal extraction fit in 4 bins of SNN
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Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

tt+jets
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NJETS VS SNN BINNING
• SNN bin boundaries chosen to maximize expected significance for 

RPV model with m(stop) = 550 GeV

• Constraint: fraction of simulated tt+jets events in each SNN bin is 

same, e.g. 56% in SNN,1

• Removes residual dependency of Njets on SNN


• Source of systematic uncertainty: Is this binning assumption also 
applicable in data?
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RPV/STEALTH 2016
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RPV/STEALTH 2017
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RPV/STEALTH 2018A
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RPV/STEALTH 2018B
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RPV/STEALTH SYSTEMATICS

68

tt Minor RPV
Source of uncertainty background background signal
PDFs 0–1 (2) 0–1 (8) 0–2 (7)
(µR, µF) scales 0–2 (5) 1–8 (18) 0–3 (4)
ISR 0–4 (15) — —
FSR 0–8 (27) — —
Color reconnection 0–10 (44) — —
ME-PS 0–14 (82) — —
UE tune 0–7 (100) — —
Pileup 0–2 (7) 0–7 (28) 0–2 (4)
JES 0–4 (18) 5–21 (100) 1–11 (31)
JER 0–2 (10) 1–15 (100) 0–6 (14)
btagging 0–1 (3) 0–2 (12) 0–2 (2)
Lepton efficiencies 0–1 (1) 3–5 (5) 3–4 (4)
HT primary 0–5 (17) — —
HT validation 0–1 (4) 0–6 (10) —
HT HT-parameterization 0–2 (9) — —
HT Njets-parameterization 0–7 (27) — —
Jet pT 0–4 (15) — —
Jet mass 0–4 (15) — —
Njets shape invariance 0–12 (37) — —
Integrated luminosity — 2.3–2.5 2.3–2.5
Theoretical cross section — 30 —
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LOCAL SIGNIFICANCE
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• Local significance of excess 2.8σ for RPV model with m(stop) = 400 GeV, 2.5σ for 
stealth SUSY with m(stop) = 350 GeV


• Significance not visible in individual years

• Best fit signal strength 0.21±0.07
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SOURCE OF LOCAL SIGNIFCANCE
• No significant excess of observation over background only fit 

observed, so where does the significance come from?

• Agreement improves when fitting S+B model, accounting for 

~1.1σ

• Significantly smaller pulls for S+B fit wrt background only fit
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SEEING THE INVISIBLE
• Direct detection of electrons, muons, 

photons and jets (experimental 
signature of quarks und gluons)


• Indirect detection of weakly 
interacting particles like neutrinos

• Sum of particle momenta in 

transverse plane has to be 
conserved


• Non-zero sum → undetected 
particles: neutrinos (or WIMPs?)


• Highly dependent on performance 
and precision of all subdetectors 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CMS DETECTOR
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