CORNERING THE TOP SQUARK WITH THE CMS EXPERIMENT

LHC Seminar, April 27th 2021

Daniel Spitzbart, Boston University on behalf of the CMS Collaboration

OUTLINE

- Quick reminder of why we are interested in top squarks
- What were the constraints from Run 1?
- Novel tools that could help us find top squarks
- Results from the CMS top squark searches of LHC Run 2
- Closing some holes where the stop could be hiding

THE STATE OF THE SM

- After Higgs discovery and Run 1: We know that the SM is incomplete, but haven't found direct evidence for new physics
- Higgs boson behaves as expected but what stabilizes its mass?
- Supersymmetry (SUSY) could provide an answer

10¹⁹

WHY TOP SQUARKS?

- Light top squark (stop) with mass around the TeV scale well motivated
 - Contributions of top quark to loop corrections of Higgs mass cancelled by top squark
- Top squark carries color charge \rightarrow sizable x-sec at LHC
- If R-parity $R = (-1)^{3B+L+2s}$ is conserved \rightarrow lightest SUSY particle (LSP) stable

DANIEL SPITZBART

FINDING TOP SQUARKS

FINDING TOP SQUARKS

CORNERING TOP SQUARKS WITH CMS

MANY CHALLENGES

- Signal kinematics highly dependent on mass splitting of top squark and LSP, $\Delta m=m(\tilde{t}_1)-m(\tilde{\chi}_1^0)$
- Larger $\Delta m \rightarrow larger p_T^{miss}$

MANY CHALLENGES

- Signal kinematics highly dependent on mass splitting of top squark and LSP, $\Delta m=m(\tilde{t}_1)-m(\tilde{\chi}_1^0)$
- Larger $\Delta m \rightarrow larger p_T^{miss}$

MANY CHALLENGES

- Signal kinematics highly dependent on mass splitting of top squark and LSP, $\Delta m=m(\tilde{t}_1)-m(\tilde{\chi}_1^0)$
- Larger $\Delta m \rightarrow larger p_T^{miss}$

 $\widetilde{\chi}_1^0$

 $\widetilde{\chi}_1^0$

STOPS AFTER RUN 1

- Run 1 legacy from ~2015, sensitivity to top squark up to ~800 GeV
- So just collect more data at higher energy?

DANIEL SPITZBART

WHAT HAPPENED?

- Excellent performance of LHC and CMS during Run 2
- Collected 140/fb of proton-proton collision data that's good for physics analysis
- Challenging pileup scenario: <µ> = 13 (2015) → 27 (2016) → 38 (2017/18)

TOP SQUARK SEARCHES IN CMS

- 3 independent searches in all hadronic, single lepton and dilepton channel
- Different SM backgrounds depending on channel

Experimental signature: 2 b-jets, 2 W bosons, pT^{miss}

All Hadronic Search

- Events selected using p_T^{miss} triggers
- Inclusive analysis design for sensitivity to many signal scenarios
- Low Δm:
 - ISR jet candidate to boost ttbar system and increase pT^{miss}
- High Δm:
 - Boosted top and W quarks → dedicated ML aided taggers

Low AM: Soft Objects

- Usual case: Identify jets
 originating from b quarks with ML
 based taggers → b-tagged jets
- Low Δm signals produce very soft b quarks
 - Often too soft for standard btagging algorithms
- Directly use secondary vertex reconstructed with inclusive vertex finder algorithm

HIGH ΔM: BOOSTED OBJECTS

- Quick reminder: CMS uses anti-k_T algorithm to cluster particles (particle flow candidates) into jets with different cone sizes
 - Most commonly used: R=0.4 \rightarrow AK4 jet, R=0.8 \rightarrow AK8 jet
- ΔR of decay products of heavy resonance, e.g. top quark, with sizable momentum: $\Delta R \sim \frac{2M}{p_T}$
- Large mass splitting between top squark and LSP → boosted top quarks

top quark with $p_T > 450 \text{ GeV}$

(BOOSTED) OBJECT TAGGING

- DNN based multi-classifier for large cone jets (AK8)
 - Takes PF candidates (42 features each) and secondary vertices (15 features) as input
 - Score for top, W, Z, Higgs, QCD jets
 - Here: Only top quark or W boson vs QCD jet tagging (merged top/W)
- Resolved top tagger: DNN tagger based on high level information of triplets of AK4 jets

All Hadronic Signal Regions

- Design 183 signal regions, optimized for different signal scenarios
- Low Δm signal regions:
 - Binned in jet multiplicity (N_{jets}), b-tagged or soft-b multiplicity (N_b, N_{SV})
 - Either inclusive in m_T^b or $m_T^b < 175$ GeV
 - ISR jet p_T, b-jet candidate p_T, p_T^{miss}
- High Δm signal regions:
 - Binned in N_{jets}, N_b, merged top or W tag multiplicity, resolved top multiplicity
 - Hadronic activity, pTmiss, mTb

CANDIDATE EVENT

LOST LEPTON BACKGROUND

- Largest background in most signal regions: single lepton tt+jets, single top, W+jets events with lost lepton (LL)
- Estimate based on measurement in single lepton data control sample
- Extrapolate to search region with transfer factor TF_{LL} from simulation
- LL background greatly reduced in regions requiring merged/resolved top or W

20

RESULTS

- Showing subset of high Δm signal regions
 - Lost lepton background dominating in these signal regions
 - Background predictions validated in orthogonal validation regions
- No statistically significant excess

DANIEL SPITZBART

CORNERING TOP SQUARKS WITH CMS

SINGLE LEPTON SEARCH

- 30% signal branching fraction, events selected with p_T^{miss} or single lepton triggers
- Use of kinematic mass variables (M_T, M_{Ib}) together with novel machine learning tools (merged and resolved top tagger)
- Retain sensitivity to low Δm signal points with soft b-tagger
- Dominant background: lost lepton from dilepton ttbar events

BACKGROUND ESTIMATES

- Main backgrounds estimated using data control samples
- Lost lepton background normalization measured in dilepton sample
- W+jets background estimated from a sample vetoing b-tagged jets
- Transfer factors to obtain background prediction in signal regions

SINGLE LEPTON RESULTS

- Numerous signal regions categorized in jet multiplicity, M_{lb}, modified topness, p_T^{miss}
 - Additional untagged/resolved/merged top tag regions for highly boosted top quarks
- No statistically significant excess

DANIEL SPITZBART

Eur.Phys.J.C 81 (2021)

DILEPTON SEARCH

- Small signal branching fraction, but clean dilepton final state
- Events selected using dilepton triggers
- Overwhelming Drell-Yan (Z→II) background reduced using p_T^{miss} significance
 - Proven to be more stable under varying pileup conditions compared to "pure"
 DT^{miss}

TOP QUARK BACKGROUND

- Largest remaining reducible background is coming from top quark pairs
- Stransverse mass M_{T2}(II) has endpoint around W boson mass for leptonically decaying top quark pairs
 - Not respected by events with severe jet mismeasurements or lost and fake lepton
 - No endpoint for some rare tt+X and diboson processes

DILEPTON RESULTS

- Signal regions defined in bins of p_T^{miss} significance and stransverse mass variables
- In-situ measurements of the normalizations of leading backgrounds: tt/single-t, Drell-Yan and multiboson, tt+Z
- Very good agreement of observation with predictions from SM

CMS-SUS-20-002

WHAT ABOUT LIGHT STOPS?

- If Δm between top squark and LSP is close
 to top quark mass → kinematics of signal
 and ttbar background very similar
 - Take special care of top corridor!
 - Standard background estimation techniques break down
 - Large SUSY scan uses fast detector simulation for feasibility to generate O(100M) events per signal model and year
 - CMS kept top corridor blinded in previous top squark publications
- A dedicated search in the dilepton channel was designed to only target this region

KINEMATICS

- Degenerate case with m(stop) = 175 GeV, m(LSP) = 1GeV maximally similar to SM
 - Sensitivity only through measurement of the ttbar x-sec
- Small kinematic differences for other points, e.g. pT^{miss}, MT2(II)
 - Fully exploited by using parametric DNN: stop and LSP mass are fed to NN → optimized model for each signal mass point

PARAMETRIC DNN RESULTS

- 11 variables used as inputs additional to the stop and LSP mass
- Parametric DNN leads to mass-point dependent background shapes
- Good discriminating power of the DNN over the full range of signal models
- No significant excess observed

PUTTING THE PIECES TOGETHER

- Right from the beginning of legacy Run 2 stop searches: Coordinate the different searches to avoid overlap of signal and control regions
- Individual searches rely on orthogonal control samples to estimate backgrounds, e.g. lost lepton
- Carefully examine correlation patterns of all systematic uncertainties

COMBINED RESULTS: CORRIDOR

 Corridor not fully excluded in previous dedicated searches

 Numerous improvements, way beyond the larger data sets, have led to ever tighter constraints on top squark pair production

Additional Signal Models

• Models with intermediate chargino in top squark decay chain

DANIEL SPITZBART —

CORNERING TOP SQUARKS WITH CMS

Additional Signal Models

- Signal models with $\Delta m < m_W$
 - Decays of top squarks via off-shell top quarks or W bosons

INCLUSIVE SEARCHES

- Searches are designed to be inclusive
- Other signal models produce similar final states, e.g. mediated dark matter production in association with ttbar: pp→tt_{XX}
- Assumes scalar/pseudoscalar mediator with couplings similar to SM Higgs boson
 - Currently best limits for this model

CORNERING TOP SQUARKS WITH CMS

WHAT IF ...?

- What if R-parity is violated (RPV SUSY)?
- Searches are inclusive but rely on $p_T^{miss} \rightarrow not$ present if LSP decays back into stable SM particles
 - E.g. through interaction terms that do not conserve B or L, decay via off-shell squark
 - Couplings: $\lambda_{ijk}^{\prime\prime}$ with i, j, k corresponding to generation of quarks

WHAT IF ...?

- Several ways to end up with low p_T^{miss}, not just previous RPV model
- Another example: R-parity conserving SUSY with Stealth sector, coupled to MSSM via portal
- Small mass splitting between superpartners in stealth sector

SEARCH FOR RPV/STEALTH STOPS

- Final state: tt+jets
 - Select events with single lepton to suppress QCD multijet production
- Most distinct feature: jet multiplicity N_{jets} → difficult to model
- Parametrize N_{jets} with jet scaling function R(i) which can be well modeled by functional form

NEURAL NETWORK VS SM TT+JETS

- Event shape and kinematic variables used in a NN, score S_{NN}
 - S_{NN} correlated with N_{jets}
- Gradient reversal is used to decorrelate S_{NN} and N_{jets}
- Allows to use N_{jets} spectrum in the signal extraction fit in 4 bins of S_{NN}

DNN TRAINING AND RESPONSE

- NN training done on mix of signal models with m(stop) 350-850 GeV
- Agreement of data and simulation within uncertainty

A.U

0.1

0.08

0.06

0.04

0.02

0.1

arXiv:2102.06976

RPV m₂ = 450 GeV

CMS Simulation Supplementary

Stealth SY \overline{Y} m₂ = 850 GeV

CORNERING TOP SQUARKS WITH CMS

Fox-Wolfram-

Moment 2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

2017 (13 TeV)

1000 1200 1400

Leading Jet p_{τ} [GeV]

Stealth SY \overline{Y} m_{γ} = 850 GeV

DANIEL SPITZBART

400

200

CMS Simulation Supplementary

600

800

rXiv:2102.06976

PV m_∓ = 450 GeV

⊃ **∀** 0.14

0.12

0.1

0.08

0.06

0.04

0.02

RESULTS

- Fits of functional form describing N_{iets} to data
 - Using 4 S_{NN} bins in 4 data taking eras
- Agreement of background only fit in combined S_{NN} bins and years
- Similar agreement in individual regions / eras

CMS

10⁸

107

10⁶

10⁵

10⁴

10³

10²

10

1.05

0.95

Events / bin

137 fb⁻¹ (13 TeV)

tī + χ QCD multijet Other tī ∔Data

••••• RPV m₇ = 450 GeV

Stealth SY \overline{Y} m_{γ} = 850 GeV

11

≥ 12

N_{jets}

INTERPRETATIONS

- Results interpreted in RPV and stealth SUSY model as function of m(stop)
- Largest local significances of 2.8 σ for RPV model with m(stop) = 400 GeV, 2.5 σ for stealth SUSY with m(stop) = 350 GeV

DANIEL SPITZBART

CORNERING TOP SQUARKS WITH CMS

CONCLUSIONS

- New developments in search strategies and tools have greatly improved the constraints on top squarks
 - Boosted object tagging, soft btagging, pT^{miss} significance, ...
 - Dedicated top corridor search allows to also constrain very particular region of parameter space
 - From 800 GeV in m(stop) in Run 1 to above 1300 GeV
- Novel search for RPV and stealth top squarks exhibits excellent sensitivity to previously uncovered signal scenarios

BACKUP

BIBLIOGRAPHY

CMS has conducted various searches for top squarks during Run 2 of the LHC (2015 - 2018):

Search for top squark production in fully-hadronic final states, submitted to PRD

Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum, JHEP 05 (2020) 032

Search for top squark pair production using dilepton final states, <u>Eur.Phys.J.C 81</u> (2021)

Combined searches for the production of supersymmetric top quark partners, <u>CMS-SUS-20-002</u>

Search for top squarks in final states with two top quarks and several light-flavor jets, submitted to PRD

SUPERSYMMETRY

46

STOPS AT THE BEGINNING OF RUN 2

 Simplified model assuming R parity conservation: top squark pair production, prompt decay to a top quark and the stable lightest neutralino (LSP) → two parameters to scan

 Different challenges depending on Δm between the particles

SIGNAL REGIONS ALL HADRONIC

m _T ^b [GeV]	Nj	Nb	Nt	$N_{\rm W}$	N _{res}	H _T [GeV]	$p_{\rm T}^{\rm miss}$ [GeV]	Bin number
<175	≥ 7	1	≥ 0	≥ 0	≥ 1	>300	[250, 300, 400, 500, ∞]	53–56
<175	≥ 7	≥ 2	≥ 0	≥ 0	≥ 1	>300	[250, 300, 400, 500, ∞]	57-60
>175	≥ 5	1	0	0	0	>1000	[250, 350, 450, 550, ∞]	61–64
>175	≥ 5	≥ 2	0	0	0	>1000	[250, 350, 450, 550, ∞]	65–68
>175	≥ 5	1	≥ 1	0	0	300-1000	[250, 550, 650, ∞]	69–71
>175	≥ 5	1	≥ 1	0	0	1000-1500	[250, 550, 650, ∞]	72–74
>175	≥ 5	1	≥ 1	0	0	>1500	[250, 550, 650, ∞]	75–77
>175	≥ 5	1	0	≥ 1	0	300-1300	[250, 350, 450, ∞]	78-80
>175	≥ 5	1	0	≥ 1	0	>1300	[250, 350, 450, ∞]	81-83
>175	≥ 5	1	0	0	≥ 1	300-1000	[250, 350, 450, 550, 650, ∞]	84-88
>175	≥ 5	1	0	0	≥ 1	1000-1500	[250, 350, 450, 550, 650, ∞]	89-93
>175	≥ 5	1	0	0	≥ 1	>1500	[250, 350, 450, 550, 650, ∞]	94–98
>175	≥ 5	1	≥ 1	≥ 1	0	>300	[250, 550, ∞]	99–100
>175	≥ 5	1	≥ 1	0	≥ 1	>300	[250, 550, ∞]	101-102
>175	≥ 5	1	0	≥ 1	≥ 1	>300	[250, 550, ∞]	103-104
>175	≥ 5	2	1	0	0	300-1000	[250, 550, 650, ∞]	105-107
>175	≥ 5	2	1	0	0	1000-1500	[250, 550, 650, ∞]	108-110
>175	≥ 5	2	1	0	0	>1500	[250, 550, 650, ∞]	111-113
>175	$^{-}_{>5}$	2	0	1	0	300-1300	[250, 350, 450, ∞]	114-116
>175	≥ 5	2	0	1	0	>1300	[250, 350, 450, ∞]	117-119
>175	≥ 5	2	0	0	1	300-1000	[250, 350, 450, 550, 650, ∞]	120-124
>175	≥ 5	2	0	0	1	1000-1500	[250, 350, 450, 550, 650, ∞]	125-129
>175	≥ 5	2	0	0	1	>1500	[250, 350, 450, 550, 650, ∞]	130-134
>175	>5	2	1	1	0	>300	[250, 550, ∞]	135-136
>175	>5	2	1	0	1	300-1300	[250, 350, 450, ∞]	137-139
>175	>5	2	1	0	1	>1300	[250, 350, 450, ∞]	140-142
>175	>5	2	0	1	1	>300	[250, 550, ∞]	143-144
>175	>5	2	2	0	0	>300	[250, 450, ∞]	145-146
>175	>5	2	0	2	0	>300	>250	147
>175	$^{-5}_{>5}$	2	0	0	2	300-1300	[250, 450, ∞]	148–149
>175	$^{-5}_{>5}$	2	0	0	2	>1300	$[250, 450, \infty]$	150-151
>175	>5	2	N+ +	- Nw +	$-N_{roc} > 3$	>300	>250	152
>175	>5	>3	1	0	0	300-1000	[250, 350, 550, ∞]	153-155
>175	$^{-5}_{>5}$	$>3^{-1}$	1	0	0	1000-1500	$[250, 350, 550, \infty]$	156-158
>175	$^{-5}_{>5}$	>3	1	0	0	>1500	$[250, 350, 550, \infty]$	159–161
>175	≥ 5	≥ 3	0	1	0	>300	$[250, 350, 550, \infty]$	162–164
>175	$^{-0}_{>5}$	>3	0	0	1	300-1000	$[250, 350, 550, \infty]$	165–167
>175	<u>_</u> >5	>3	0	0	1	1000-1500	$[250, 350, 550, \infty]$	168-170
>175	<u>~</u> 5	>3	0	0	1	>1500	$[250, 350, 550, \infty]$	171–173
>175	<u>~</u> 0 >5	>3	1	1	0	>300	>250	174
>175	 >5	>3	1	Ô	1	>300	[250_350_∞]	175-176
>175	<u>~</u> 5 >5	>3	0	1	1	>300	>250	177
>175	<u>~</u> 5	<u>~</u> 3	2	0 0	0 0	>300	>250	178
>175	<u>~</u> 5 >5	<u>~</u> 3	0	2	0	>300	>250	170
>175	<u>~</u> 5	<u>~</u> 3	0	0	2	>300	$[250, 350, \infty]$	180-181
>175	<u>~</u> 5	<u>~</u> 3		- Nu -	- N -> 3	>300	>250	187
	25	25	⊥vt ⊤	TAM	$1 \text{ vres} \leq 3$	/ 500	/ 200	102

VALIDATION

- Background estimates validated in dedicated signal depleted samples orthogonal to signal regions
 - Kinematically similar to signal regions
- Inverting separation requirement of jets and pT^{miss}

DANIEL SPITZBART

CORNERING TOP SQUARKS WITH CMS

CANDIDATE EVENTS

Z→INV BACKGROUND

- $Z \rightarrow vv$ events have large genuine p_T^{miss}
- Two data control samples used to estimate $Z \rightarrow vv$ background
 - $Z \rightarrow II$ to extract normalization factor R_Z
 - γ +jets for shape correction factor S_{γ}

$$N_{\text{pred}}^{Z(\nu\overline{\nu})+\text{jets}} = R_Z S_\gamma N_{\text{MC}}^{Z(\nu\overline{\nu})+\text{jets}}$$

SINGLE LEPTON SEARCH

Label	Nj	t _{mod}	$M_{\ell b}$ [GeV]	ttagging category	$p_{\rm T}^{\rm miss}$ bins [GeV]
A0					[600, 750, +∞]
A1	2–3	>10	≤ 175	U	[350, 450, 600]
A2				Μ	[250, 600]
В	2–3	>10	>175		$[250, 450, 700, +\infty]$
С	≥ 4	≤ 0	≤ 175		$[350, 450, 550, 650, 800, +\infty]$
D	≥ 4	≤ 0	>175		$[250, 350, 450, 600, +\infty]$
E0					$[450, 600, +\infty]$
E1	>1	0 10	/175	U	[250, 350, 450]
E2	≤ 4	0-10	$\leq 1/3$	Μ	[250, 350, 450]
E3				R	[250, 350, 450]
F	≥ 4	0–10	>175		$[250, 350, 450, +\infty]$
G0					$[450, 550, 750, +\infty]$
G1	> 1	10	/17 5	U	[250, 350, 450]
G2	<u> </u>	>10	$\leq 1/3$	Μ	[250, 350, 450]
G3				R	[250, 350, 450]
Н	≥ 4	>10	>175		$[250, 500, +\infty]$

SINGLE LEPTON SEARCH

Source	Signal	Lost lepton	1ℓ (not from t)	$Z \to \nu \bar{\nu}$
Data statistical uncertainty		5-50%	4-30%	
Simulation statistical uncertainty	6–36%	3-68%	5-70%	4–41%
tī $p_{\rm T}^{\rm miss}$ modeling		3-50%		_
Signal $p_{\rm T}^{\rm miss}$ modeling	1–25%			
QCD scales	1–5%	0–3%	2–5%	1–40%
Parton distribution		0–4%	1-8%	1–12%
Pileup	1–5%	1-8%	0–5%	0–7%
Luminosity	2.3-2.5%			2.3–2.5%
$W + b(\overline{b})$ cross section	_		20-40%	_
tīZ cross section			_	5-10%
System recoil (ISR)	1–13%	0–3%	_	_
Jet energy scale	2–24%	1–16%	1-34%	1–28%
$p_{\rm T}^{\rm miss}$ resolution		1-10%	1–5%	
Trigger	2–3%	1–3%		2–3%
Lepton efficiency	3–4%	2–12%		1–2%
Merged t tagging efficiency	3–6%			5-10%
Resolved t tagging efficiency	5-6%			3–5%
b tagging efficiency	0–2%	0–1%	1–7%	1–10%
Soft b tagging efficiency	2–3%	0–1%	0–1%	0–5%

MODIFIED TOPNESS

$$t_{\rm mod} = \ln(\min S), \text{ with } S = \frac{\left(m_W^2 - (p_v + p_\ell)^2\right)^2}{a_W^4} + \frac{\left(m_t^2 - (p_b + p_W)^2\right)^2}{a_t^4},$$

CORNERING TOP SQUARKS WITH CMS

STOP SEARCH IN DILEPTONS

- Top quark pair production (ttbar) can result in final state with two leptons and two neutrinos \rightarrow genuine p_T^{miss}
- Exploit fact that leptons and neutrinos come from W bosons
 - Transverse mass M_{T2}(II)
- In a perfect world, ttbar events contained in $M_{T_2}(II) < M_W$ region
- Several detector effects can promote events over this threshold
 - Extensive studies conducted

$$M_{\text{T2}}(\ell\ell) = \min_{\vec{p}_{\text{T}}^{\text{miss1}} + \vec{p}_{\text{T}}^{\text{miss2}} = \vec{p}_{\text{T}}^{\text{miss}}} \left(\max\left[M_{\text{T}}(\vec{p}_{\text{T}}^{\text{vis1}}, \vec{p}_{\text{T}}^{\text{miss1}}), M_{\text{T}}(\vec{p}_{\text{T}}^{\text{vis2}}, \vec{p}_{\text{T}}^{\text{miss2}}) \right] \right)$$

Daniel Spitzbart _____ Cornering Top Squarks with CMS _____

DILEPTON SEARCH

		Systematic uncertainty		Typical (%)	Max (%)
			Integrated luminosity	2	2
			Pileup modeling	5	7
			Jet energy scale	4	20
			Jet energy resolution	3	4
			btagging efficiency	2	3
			btagging mistag rate	1	7
Name	Definition		Trigger efficiency	1	2
TTCRSF	$M_{T2}(\ell \ell) < 100 \text{ GeV}$, SF leptons, m	$(\ell\ell) - m_{\rm Z} > 15 {\rm GeV}$	Lepton identification efficiency	3	5
TTCRDE	$M_{\rm T2}(\ell\ell) < 100 {\rm GeV}$ DE leptons		Modeling of unclustered energy	3	7
	$M_{12}(tt) < 100 \text{ GeV}, D1 \text{ leptons}$		Non-Gaussian jet mismeasurements	6	6
1122j2b		$N_{\rm jets} = 2, N_{\rm b} \ge 2$	Misidentified or nonprompt leptons	5	5
TTZ3j1b	$N_{\ell} = 3, S \ge 0, \ge 1$ SF lepton pair	$N_{\rm jets} = 3, N_{\rm b} = 1$	tt normalization	9	9
TTZ3j2b	with $ m(\ell\ell) - m_Z < 10 \text{GeV}$	$N_{\rm jets} = 3, N_{\rm b} \ge 2$	ttZ normalization	10	14
TTZ4j1b		$N_{\rm jets} \ge 4$, $N_{\rm b} = 1$	Multiboson background normalization	4	8
TTZ4j2b		$N_{\text{iets}} \geq 4$, $N_{\text{b}} \geq 2$	ttH/Wbackground normalization	5	8
,	Same as SR0-SR12 in Table ?? .)	Drell-Yan normalization	3	8
CR0-CR12	but SE leptons $ m(\ell \ell) - m_{\pi} < 150$	CeV and $M_{\rm c} = 0$	Parton distribution functions	2	4
	m(w) - mZ < 100	Set and $W_{b} = 0$	$\mu_{\rm R}$ and $\mu_{\rm F}$ choice	7	11

$M_{\text{T2}}(b\ell b\ell)$ (GeV)	${\mathcal S}$	$100 < M_{\rm T2}(\ell\ell) < 140{\rm GeV}$	$140 < M_{\rm T2}(\ell\ell) < 240{\rm GeV}$	$M_{\rm T2}(\ell\ell) > 240{\rm GeV}$
0 100	12–50	SR0	SR6	
0-100	>50	SR1	SR7	
100 200	12–50	SR2	SR8	CD10
100-200	>50	SR3	SR9	5K12
> 2 00	12–50	SR4	SR10	
>200	>50	SR5	SR11	

DILEPTON SEARCH

CORNERING TOP SQUARKS WITH CMS

T8BBLLNUNU

CORRIDOR SEARCH

Source	Average for $t\bar{t}$ (%)
PDFs and α_S (acceptance)	1.0
$\mu_{\rm F}$, $\mu_{\rm R}$ scales (acceptance)	3.8
Initial-state radiation	0.6
Final-state radiation	3.4
Top $p_{\rm T}$	1.3
Matrix element/parton shower matching	2
Underlying event	1.5
Top mass (acceptance)	1.5

SEARCH FOR RPV/STEALTH STOPS

- Final state: tt+jets
 - Select events with single lepton to suppress QCD
- Most distinct feature: jet multiplicity N_{jets} → difficult to model
- Parametrize N_{jets} with jet scaling function R(i)
- Ratio can be well modeled by functional form

$$f(i) = a_2 + \left[\frac{\left(a_1 - a_2\right)^{i-7}}{\left(a_0 - a_2\right)^{i-9}}\right]^{1/2}$$
with

with

$$a_0 = f(7), a_1 = f(9), a_2 = \lim_{i \to \infty} f(i)$$

Njets distribution in each $S_{NN,j}$ bin given by recursive expression, with free parameter Y_7^j

$$M_i^j = Y_7^j \Pi_{k=7}^{i-1} f(k)$$

CORNERING TOP SQUARKS WITH CMS

DANIEL SPITZBART

NEURAL NETWORK VS SM TT+JETS

- Feed event shape and kinematic variables into a NN producing score S_{NN}
- Problem: S_{NN} correlated with N_{jets}
- S_{NN} of tt+jets with high N_{jets} more signal lik
- Gradient reversal is used to decorrelate DNN response S_{NN} and N_{jets}
- Allows to use N_{jets} spectrum in the signal extraction fit in 4 bins of SNN

DECOUPLING DNN FROM NJETS

- S_{NN} of tt+jets with high N_{jets} more signal like
- Gradient reversal is used to decorrelate DNN response S_{NN} and N_{jets}
- Allows to use N_{jets} spectrum in the signal extraction fit in 4 bins of S_{NN}

NJETS VS SNN BINNING

- SNN bin boundaries chosen to maximize expected significance for RPV model with m(stop) = 550 GeV
 - Constraint: fraction of simulated tt+jets events in each S_{NN} bin is same, e.g. 56% in $S_{\text{NN,1}}$
 - Removes residual dependency of N_{jets} on S_{NN}
- Source of systematic uncertainty: Is this binning assumption also applicable in data?

RPV/STEALTH 2016

RPV/STEALTH 2017

RPV/STEALTH 2018A

RPV/STEALTH 2018B

RPV/STEALTH SYSTEMATICS

	tī	Minor	RPV
Source of uncertainty	background	background	signal
PDFs	0-1 (2)	0-1 (8)	0-2 (7)
$(\mu_{\rm R}, \mu_{\rm F})$ scales	0-2 (5)	1-8 (18)	0–3 (4)
ISR	0-4 (15)	—	
FSR	0-8 (27)	_	
Color reconnection	0-10 (44)	—	
ME-PS	0–14 (82)	_	
UE tune	0–7 (100)	_	
Pileup	0-2 (7)	0-7 (28)	0-2 (4)
JES	0-4 (18)	5-21 (100)	1–11 (31)
JER	0-2 (10)	1–15 (100)	0-6 (14)
btagging	0–1 (3)	0–2 (12)	0–2 (2)
Lepton efficiencies	0–1 (1)	3–5 (5)	3-4 (4)
$H_{\rm T}$ primary	0–5 (17)	—	
$H_{\rm T}$ validation	0–1 (4)	0-6 (10)	
$H_{\rm T}$ $H_{\rm T}$ -parameterization	0–2 (9)	—	—
$H_{\rm T} N_{\rm jets}$ -parameterization	0–7 (27)	—	
Jet <i>p</i> _T	0-4 (15)	—	—
Jet mass	0-4 (15)	—	
N _{jets} shape invariance	0–12 (37)	—	
Integrated luminosity	—	2.3–2.5	2.3–2.5
Theoretical cross section	—	30	—

LOCAL SIGNIFICANCE

- Local significance of excess 2.8σ for RPV model with m(stop) = 400 GeV, 2.5σ for stealth SUSY with m(stop) = 350 GeV
- Significance not visible in individual years
- Best fit signal strength 0.21±0.07

Source of local Signifcance

- No significant excess of observation over background only fit observed, so where does the significance come from?
 - Agreement improves when fitting S+B model, accounting for ${\sim}1.1\sigma$
 - Significantly smaller pulls for S+B fit wrt background only fit

SEEING THE INVISIBLE

- Direct detection of electrons, muons, photons and jets (experimental signature of quarks und gluons)
- Indirect detection of weakly interacting particles like neutrinos
 - Sum of particle momenta in transverse plane has to be conserved
 - Non-zero sum → undetected particles: neutrinos (or WIMPs?)
 - Highly dependent on performance and precision of all subdetectors

energy/momentum of detected particles

CMS DETECTOR

