CORNERING THE TOP SQUARK WITH THE CMS EXPERIMENT

LHC Seminar, April 27th 2021

Daniel Spitzbart, Boston University on behalf of the CMS Collaboration

OUTLINE

- Quick reminder of why we are interested in top squarks
- What were the constraints from Run 1?
- Novel tools that could help us find top squarks
- Results from the CMS top squark searches of LHC Run 2
- Closing some holes where the stop could be hiding

THE STATE OF THE SM

- After Higgs discovery and Run 1: We know that the SM is incomplete, but haven't found direct evidence for new physics
- Higgs boson behaves as expected but what stabilizes its mass?
- Supersymmetry (SUSY) could provide an answer

1019

WHY TOP SQUARKS?

- Light top squark (stop) with mass around the TeV scale well motivated
	- Contributions of top quark to loop corrections of Higgs mass cancelled by top squark
- Top squark carries color charge \rightarrow sizable x-sec at LHC
- If R-parity $R = (-1)^{3B+L+2s}$ is conserved → lightest SUSY particle (LSP) stable

4

FINDING TOP SQUARKS

FINDING TOP SQUARKS

DANIEL SPITZBART CORNERING TOP SQUARKS WITH CMS

MANY CHALLENGES

- Signal kinematics highly dependent on mass splitting of top squark and LSP, $\Delta m = m(\tilde{t}_1) - m(\tilde{\chi}^0_1)$
- Larger $\Delta m \rightarrow$ larger p_Tmiss

 -7

7

MANY CHALLENGES

- Signal kinematics highly dependent on mass splitting of top squark and LSP, $\Delta m = m(\tilde{t}_1) - m(\tilde{\chi}^0_1)$
- Larger $\Delta m \rightarrow$ larger p_Tmiss

MANY CHALLENGES

- Signal kinematics highly dependent on mass splitting of top squark and LSP, $\Delta m = m(\tilde{t}_1) - m(\tilde{\chi}^0_1)$
- Larger $\Delta m \rightarrow$ larger p_Tmiss

STOPS AFTER RUN 1

- Run 1 legacy from \sim 2015, sensitivity to top squark up to \sim 800 GeV
- So just collect more data at higher energy?

WHAT HAPPENED?

- Excellent performance of LHC and CMS during Run 2
- Collected 140/fb of proton-proton collision data that's good for physics analysis
- Challenging pileup scenario: $\langle \mu \rangle = 13 (2015) \rightarrow 27 (2016) \rightarrow 38$ (2017/18)

TOP SQUARK SEARCHES IN CMS

- 3 independent searches in all hadronic, single lepton and dilepton channel
- Different SM backgrounds depending on channel

Experimental signature: 2 b-jets, 2 W bosons, p_T ^{miss}

ALL HADRONIC SEARCH

- Events selected using p_T ^{miss} triggers
- Inclusive analysis design for sensitivity to many signal scenarios
- Low Δm:
	- **ISR jet candidate** to boost ttbar system and increase p_T ^{miss}
- High Δm:
	- Boosted top and W quarks \rightarrow dedicated ML aided taggers

LOW ΔM: SOFT OBJECTS

- Usual case: Identify jets originating from b quarks with ML based taggers \rightarrow b-tagged jets
- Low Δm signals produce very soft b quarks
	- Often too soft for standard btagging algorithms
- Directly use secondary vertex reconstructed with inclusive vertex finder algorithm

HIGH ΔM: BOOSTED OBJECTS

- Quick reminder: CMS uses anti- k_T algorithm to cluster particles (particle flow candidates) into jets with different cone sizes
	- Most commonly used: $R=0.4 \rightarrow AK4$ jet, $R=0.8 \rightarrow AK8$ jet
- ΔR of decay products of heavy resonance, e.g. top quark, with sizable momentum: Δ*R* ∼ 2*M pT*
- Large mass splitting between top squark and LSP → boosted top quarks • Large mass splitting between top squark and LSP \rightarrow boosted to $\frac{1}{2}$

top quark with $p_T > 450$ GeV

(BOOSTED) OBJECT TAGGING

- DNN based multi-classifier for large cone jets (AK8)
	- Takes PF candidates (42 features each) and secondary vertices (15 features) as input
	- Score for top, W, Z, Higgs, QCD jets
	- Here: Only top quark or W boson vs QCD jet tagging (merged top/W)
- Resolved top tagger: DNN tagger based on high level information of triplets of AK4 jets

ALL HADRONIC SIGNAL REGIONS

- Design 183 signal regions, optimized for different signal scenarios
- Low Δm signal regions:
	- Binned in jet multiplicity (N_{jets}), b-tagged or soft-b multiplicity (N_{b} , N_{SV})
	- Either inclusive in m_T ^b or m_T ^b < 175 GeV
	- ISR jet p_T , b-jet candidate p_T , p_T ^{miss}
- High Δm signal regions:
	- Binned in N_{jets}, N_b, merged top or W tag multiplicity, resolved top multiplicity
	- Hadronic activity, p_T ^{miss}, m_Tb

CANDIDATE EVENT

LOST LEPTON BACKGROUND 0.51 1.5 \pm \pm \pm \pm

- Largest background in most signal regions: single lepton tt+jets, single top, W+jets events with lost lepton (LL)
- · Estimate based on measurement in single lepton data control sample
	- Extrapolate to search region with transfer factor TF_{LL} from simulation
	- LL background greatly reduced in regions requiring merged/resolved top or W ² 10

RESULTS

- Showing subset of high Δm signal regions
	- Lost lepton background dominating in these signal regions
	- Background predictions validated in orthogonal validation regions
- No statistically significant excess

[JHEP 05 \(2020\) 032](https://link.springer.com/article/10.1007/JHEP05(2020)032)

SINGLE LEPTON SEARCH

- 30% signal branching fraction, events selected with p_T ^{miss} or single lepton triggers
- Use of kinematic mass variables (M_T, M_{lb}) together with novel machine learning tools (merged and resolved top tagger)
- Retain sensitivity to low Δm signal points with soft b-tagger
- Dominant background: lost lepton from dilepton ttbar events

BACKGROUND ESTIMATES

- Main backgrounds estimated using data control samples
- Lost lepton background normalization measured in dilepton sample
- W+jets background estimated from a sample vetoing b-tagged jets
- **Transfer factors** to obtain background prediction in signal regions

SINGLE LEPTON RESULTS **51N**

- Numerous signal regions categorized in jet multiplicity, M_{lb}, modified topness, pr^{miss}
- Additional untagged/resolved/merged top tag regions for highly boosted top quarks in the signal region bins were inspected to determine it and the signal region of any detector or α 14 and 14 control 16 can be on the control of the fluctuation bins. The few signal region bins. The fighting
- No statistically significant excess

[Eur.Phys.J.C 81 \(2021\)](https://link.springer.com/article/10.1140/epjc/s10052-020-08701-5)

DILEPTON SEARCH

- Small signal branching fraction, but clean dilepton final state
- Events selected using dilepton triggers
- Overwhelming Drell-Yan (Z→ll) background reduced using p_T ^{miss} significance
	- Proven to be more stable under varying pileup conditions compared to "pure" p_T miss

TOP QUARK BACKGROUND

- Largest remaining reducible background is coming from top quark pairs
- Stransverse mass $M_{T2}(II)$ has endpoint around W boson mass for leptonically decaying top quark pairs
	- Not respected by events with severe jet mismeasurements or lost and fake lepton
	- No endpoint for some rare tt+X and diboson processes

DILEPTON RESULTS

- Signal regions defined in bins of p_T ^{miss} significance and stransverse mass variables
- In-situ measurements of the normalizations of leading backgrounds: tt/single-t, Drell-Yan and multiboson, tt+Z
- Very good agreement of observation with predictions from SM

[CMS-SUS-20-002](http://cds.cern.ch/record/2758361?ln=en)

WHAT ABOUT LIGHT STOPS? pp → IC

- If Δm between top squark and LSP is close to top quark mass \rightarrow kinematics of signal and ttbar background very similar
	- Take special care of top corridor!
	- Standard background estimation techniques break down
	- Large SUSY scan uses fast detector simulation for feasibility to generate O(100M) events per signal model and **Figure 1. In the spanned by the spanned by the spanned by the stop of the stop of the stop (** year
	- CMS kept top corridor blinded in previous top squark publications
- A dedicated search in the dilepton channel was designed to only target this region **in the limit on the light-**

KINEMATICS

- Degenerate case with $m(\text{stop}) = 175$ GeV, $m(\text{LSP}) = 1$ GeV maximally similar to SM
	- Sensitivity only through measurement of the ttbar x-sec
- Small kinematic differences for other points, e.g. p_T ^{miss}, M_T ₂(II)
	- Fully exploited by using parametric DNN: stop and LSP mass are fed to $NN \rightarrow$ optimized model for each signal mass point

PARAMETRIC DNN RESULTS

- 11 variables used as inputs additional to the stop and LSP mass
- Parametric DNN leads to mass-point dependent background shapes
- Good discriminating power of the DNN over the full range of signal models
- No significant excess observed

PUTTING THE PIECES TOGETHER

- Right from the beginning of legacy Run 2 stop searches: Coordinate the different searches to avoid overlap of signal and control regions
- Individual searches rely on orthogonal control samples to estimate backgrounds, e.g. lost lepton
- Carefully examine correlation patterns of all systematic uncertainties

COMBINED RESULTS: CORRIDOR

1400

 $pp \rightarrow \tilde{t}_1$

Corridor not fully excluded in previous dedicated searches

180

Numerous improvements, way beyond the larger data sets, have led to ever tighter constraints on top squark pair production

 10^{-4}

 10^{-3}

 \vec{C}

95%

 10^{-2}

 10^{-1}

95% CL upper limit on cross section (pb)

upper limit on cross section (pb)

1

10

 \textbf{CMS} Preliminary $\rightarrow 137 \text{ fb}^{-1}(13 \text{ TeV})$ $\rightarrow 10^{2}$

1 Approx. NNLO+NNLL exclusion

 $\bar{\tilde{t}}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$

ADDITIONAL SIGNAL MODELS

Models with intermediate chargino in top squark decay chain

DANIEL SPITZBART CORNERING TOP SQUARKS WITH CMS

ADDITIONAL SIGNAL MODELS

- Signal models with $\Delta m < m_W$
	- Decays of top squarks via off-shell top quarks or W bosons

INCLUSIVE SEARCHES

- Searches are designed to be inclusive
- Other signal models produce similar final states, e.g. mediated dark matter production in association with ttbar: pp→ttχχ
- Assumes scalar/pseudoscalar mediator with couplings similar to SM Higgs boson
	- Currently best limits for this model

35

WHAT IF …?

- What if R-parity is violated (RPV SUSY)?
- Searches are inclusive but rely on p_T ^{miss} \rightarrow not present if LSP decays back into stable SM particles
	- E.g. through interaction terms that do not conserve B or L, decay via off-shell squark
	- Couplings: λ''_{ijk} with i, j, k corresponding to generation of quarks

WHAT IF ...?

- Several ways to end up with low p_Tmiss, not just previous RPV model
- Another example: R-parity conserving SUSY with Stealth sector, coupled to MSSM via portal
- Small mass splitting between superpartners in stealth sector *S*˜ *S*˜

SEARCH FOR RPV/STEALTH STOPS [2102.06976](https://arxiv.org/abs/2102.06976)

- Final state: tt+jets
	- Select events with single lepton to suppress QCD multijet production
- Most distinct feature: jet multiplicity $N_{jets} \rightarrow$ difficult to model
- Parametrize N_{iets} with jet scaling function R(i) which can be well modeled by functional form

NEURAL NETWORK VS SM TT+JETS

- Event shape and kinematic variables used in a NN, score S_{NN}
	- S_{NN} correlated with N_{jets}
- Gradient reversal is used to decorrelate S_{NN} and N_{jets}
- Allows to use N_{lets} spectrum in the signal extraction fit in 4 bins of **SNN**

DNN TRAINING AND RESPONSE

- NN training done on mix of signal models with m(stop) 350-850 GeV
- Agreement of data and simulation within uncertainty

0

0.02

0.04

0.06

 0.08

 Ω .

arXiv:2102.06976

 RPV m_{τ} = 450 GeV Stealth SYV m_{τ} = 850 GeV

Fox-Wolfram-

Moment 2

CMS*Simulation Supplementary*

A.U.

0

0.02

0.04

0.06

0.08

 0.1

0.12

⊃
⊄ 0.14

0 200 400 600 800 1000 1200 1400

PV m_{\tilde{r}} = 450 GeV Stealth SYV m_{\tilde{r}} = 850 GeV

CMS*Simulation Supplementary*

arXiv:2102.06976

Leading Jet p_T [GeV]

2017 (13 TeV)

RESULTS

- Fits of functional form describing N_{iets} to data
	- Using 4 S_{NN} bins in 4 data taking eras
- Agreement of background only fit in combined S_{NN} bins and years
- Similar agreement in individual regions / eras

 \mathbb{R} 2 \mathbb{R} 3 \mathbb{R} 3

 \mathbf{t} tt + X QCD multijet Other \mathbf{t} tt + Data

CMS $137 \text{ fb}^{-1} (13 \text{ TeV})$

 \cdots RPV m_{\widetilde{t}} = 450 GeV

Stealth SYY $m_{\tilde{\gamma}} = 850$ GeV

10

0.95

Data / Pred.

Data / Pred

1.05

1

 10^2

 10^{3}

 10^{4}

 10^{5}

 10^6

 10^{7}

Events / bin

Events / bin

 10^8

INTERPRETATIONS

- Results interpreted in RPV and stealth SUSY model as function of m(stop)
- Largest local significances of 2.8σ for RPV model with m(stop) = 400 GeV, 2.5σ for stealth SUSY with m(stop) = 350 GeV

DANIEL SPITZBART CORNERING TOP SQUARKS WITH CMS

CONCLUSIONS

- New developments in search strategies and tools have greatly improved the constraints on top squarks
	- Boosted object tagging, soft btagging, p_T ^{miss} significance, ...
	- Dedicated top corridor search allows to also constrain very particular region of parameter space
	- From 800 GeV in m(stop) in Run 1 to above 1300 GeV
- Novel search for RPV and stealth top squarks exhibits excellent sensitivity to previously uncovered signal scenarios

BACKUP

BIBLIOGRAPHY

CMS has conducted various searches for top squarks during Run 2 of the LHC (2015 - 2018):

Search for top squark production in fully-hadronic final states, [submitted to PRD](https://arxiv.org/abs/2103.01290)

Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum, [JHEP 05 \(2020\) 032](https://link.springer.com/article/10.1007/JHEP05(2020)032)

Search for top squark pair production using dilepton final states, **Eur. Phys.J.C 81** [\(2021\)](https://link.springer.com/article/10.1140/epjc/s10052-020-08701-5)

Combined searches for the production of supersymmetric top quark partners, [CMS-](http://cds.cern.ch/record/2758361?ln=en)[SUS-20-002](http://cds.cern.ch/record/2758361?ln=en)

Search for top squarks in final states with two top quarks and several light-flavor jets, [submitted to PRD](https://arxiv.org/abs/2102.06976)

SUPERSYMMETRY

46

STOPS AT THE BEGINNING OF RUN 2

Simplified model assuming R parity conservation: top squark pair production, prompt decay to a top quark and the stable lightest neutralino (LSP) \rightarrow two parameters to scan

Different challenges depending on Δm between the particles

SIGNAL REGIONS ALL HADRONIC

VALIDATION

- Background estimates validated in dedicated signal depleted samples orthogonal to signal regions
	- Kinematically similar to signal regions
- Inverting separation requirement of jets and p_T ^{miss}

DANIEL SPITZBART CORNERING TOP SQUARKS WITH CMS

CANDIDATE EVENTS

Z → INV BACKGROUND ϵ in the simulation to match the simulation to match the total yield in a total yield in a the hatched region to matched region to match the total yield in data. The hatched region of the total yield region of the hatch

- $Z \rightarrow \nu \nu$ events have large genuine p T^{miss}
- Two data control samples used to estimate Z→vv background
- Z→II to extract normalization factor Rz
- γ+jets for shape correction factor S_γ

$$
N_{\text{pred}}^{Z(\nu \overline{\nu}) + \text{jets}} = R_Z S_\gamma N_{\text{MC}}^{Z(\nu \overline{\nu}) + \text{jets}}
$$

SINGLE LEPTON SEARCH

SINGLE LEPTON SEARCH

MODIFIED TOPNESS

$$
t_{\text{mod}} = \ln(\min S), \text{ with } S = \frac{\left(m_W^2 - (p_v + p_\ell)^2\right)^2}{a_W^4} + \frac{\left(m_t^2 - (p_b + p_W)^2\right)^2}{a_t^4},
$$

DANIEL SPITZBART CORNERING TOP SQUARKS WITH CMS

STOP SEARCH IN DILEPTONS

- Top quark pair production (ttbar) can result in final state with two leptons and two neutrinos \rightarrow genuine p T^{miss}
- Exploit fact that leptons and neutrinos come from W bosons
	- Transverse mass $M_{T2}(II)$
- In a perfect world, ttbar events contained in $M_{T2}(II)$ < M_W region
- Several detector effects can promote events over this threshold
- **Extensive studies conducted**

*p*vis1,2

where the choice \mathcal{L}

$$
M_{\text{T2}}(\ell\ell) = \min_{\vec{p}_{\text{T}}^{\text{miss1}} + \vec{p}_{\text{T}}^{\text{miss2}} = \vec{p}_{\text{T}}^{\text{miss}}} \left(\max \left[M_{\text{T}}(\vec{p}_{\text{T}}^{\text{vis1}}, \vec{p}_{\text{T}}^{\text{miss1}}), M_{\text{T}}(\vec{p}_{\text{T}}^{\text{vis2}}, \vec{p}_{\text{T}}^{\text{miss2}}) \right] \right)
$$

Daniel Splitzbart —
Cornering Top Squarks with CMS — — —— — 55

DILEPTON SEARCH

DILEPTON SEARCH

T8BBLLNUNU

CORRIDOR SEARCH

SEARCH FOR RPV/STEALTH STOPS

- Final state: tt+jets
	- Select events with single lepton to suppress QCD
- Most distinct feature: jet multiplicity $N_{jets} \rightarrow$ difficult to model
- Parametrize N_{lets} with jet scaling function $R(i)$
- Ratio can be well modeled by functional form

$$
f(i) = a_2 + \left[\frac{(a_1 - a_2)^{i-7}}{(a_0 - a_2)^{i-9}} \right]^{1/2}
$$

with

$$
a_0 = f(7), a_1 = f(9), a_2 = \lim_{i \to \infty} f(i) \xrightarrow[\alpha]{\exists} f
$$

Njets distribution in each S_{NN,j} bin given by recursive expression, with free parameter Y_7 j

$$
M_i^j = Y_7^j \Pi_{k=7}^{i-1} f(k)
$$

DANIEL SPITZBART CORNERING TOP SQUARKS WITH CMS

NEURAL NETWORK VS SM TT+JETS

- Feed event shape and kinematic variables into a NN producing score S_{NN}
- Problem: S_{NN} correlated with N_{jets}
- S_{NN} of tt+jets with high N_{jets} more signal like
- Gradient reversal is used to decorrelate DNN response S_{NN} and N_{jets}
- Allows to use N_{iets} spectrum in the signal extraction fit in 4 bins of S_{N1N}

DECOUPLING DNN FROM NJETS

- S_{NN} of tt+jets with high N_{jets} more signal like
- Gradient reversal is used to decorrelate DNN response S_{NN} and **N**jets
- Allows to use N_{jets} spectrum in the \sim signal extraction fit in 4 bins of S_{NN}

NJETS VS SNN BINNING

- SNN bin boundaries chosen to maximize expected significance for RPV model with m(stop) = 550 GeV
	- Constraint: fraction of simulated tt+jets events in each S_{NN} bin is same, e.g. 56% in $S_{NN,1}$
	- Removes residual dependency of N_{iets} on S_{NN}
- Source of systematic uncertainty: Is this binning assumption also applicable in data?

RPV/STEALTH 2016

RPV/STEALTH 2017

RPV/STEALTH 2018A

RPV/STEALTH 2018B

RPV/STEALTH SYSTEMATICS

LOCAL SIGNIFICANCE

- Local significance of excess 2.8σ for RPV model with m(stop) = 400 GeV, 2.5σ for stealth SUSY with m(stop) = 350 GeV
- Significance not visible in individual years
- Best fit signal strength 0.21 ± 0.07

SOURCE OF LOCAL SIGNIFCANCE

- No significant excess of observation over background only fit observed, so where does the significance come from?
	- Agreement improves when fitting S+B model, accounting for ~1.1σ
	- Significantly smaller pulls for S+B fit wrt background only fit

SEEING THE INVISIBLE

- Direct detection of electrons, muons, photons and jets (experimental signature of quarks und gluons)
- Indirect detection of weakly interacting particles like neutrinos
	- Sum of particle momenta in transverse plane has to be conserved
	- Non-zero sum \rightarrow undetected particles: neutrinos (or WIMPs?)
	- Highly dependent on performance and precision of all subdetectors

detected particles

CMS DETECTOR

