HPNP Special Edition 2021

2021. 3. 25.

How to unscramble the NP effects on the nonresonant

 diHiggs process at the LHCJeonghyeon Song
(Konkuk University, Korea)
w/ K.Cheung, A.Jueid, C.Lu, Y.W. Yoon, PRD 103 (2021)

1. Motivation
2. Driving question
3. 2HDM with VLQs
4. Results
5. Conclusions
6. Motivation

Higgs couplings in the SM are well defined, associated with the masses.

$$
\Phi(x) \rightarrow \mathrm{e}^{-\mathrm{i} \theta_{a}(x) \tau^{a}(x)} \Phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)}
$$

Higgs couplings in the SM are well defined, associated with the masses.

$$
\Phi(x) \rightarrow \mathrm{e}^{-\mathrm{i} \theta_{a}(x) \tau^{a}(x)} \Phi(x)=\frac{1}{\sqrt{2}}\binom{0}{v+H(x)}
$$

The couplings involving a single Higgs boson are measured to be SM-like.

Trilinear Higgs coupling is the first target among unmeasured couplings.

Challenging at the LHC

$$
\kappa_{\lambda} \equiv \frac{\lambda_{h h h}}{\lambda_{h h h}^{S M}}
$$

Very challenging at the LHC

Almost impossible at the LHC

DiHiggs process via gluon fusion at the LHC has the best chance to probe κ_{λ}.

Higgs-fermion Yukawa coupling

Higgs boson self-coupling

Dedicated searches for the diHiggs process have been performed by ATLAS and CMS.

Destructive interference suppresses the diHiggs signal rate in the SM.

$$
\begin{aligned}
& \frac{d \hat{\sigma}(g g \rightarrow H H)}{d t} \\
& \quad=\frac{\alpha_{s}^{2}}{2^{15} \pi^{3} v^{4}} \frac{\left|F_{1}\left(s, t, u, m_{t}^{2}\right)\right|^{2}+\left|F_{2}\left(s, t, u, m_{t}^{2}\right)\right|^{2}}{s^{2}}
\end{aligned}
$$

LET (Low Energy Theorem):

$$
\begin{aligned}
& \text { Box Triangle } \\
& \left.F_{1}\left(s, t, u, m_{t}^{2}\right)\right|_{\mathrm{LET}} \rightarrow\left(-\frac{4}{3}+\frac{4 m_{H}^{2}}{s-m_{H}^{2}}\right) s, \\
& \left.F_{2}\left(s, t, u, m_{t}^{2}\right)\right|_{\text {LET }} \rightarrow 0 \text {.Box }
\end{aligned}
$$

2. Driving question

If the diHiggs rate is larger than the SM prediction, can we tell the NP origin?

For illustrative purpose, we make 2 assumptions.

1. $\kappa_{H i j}=1$ for all SM particles.
2. $\frac{\sigma}{\sigma_{\mathrm{SM}}}(g g \rightarrow H H)=3$.

There are 3 kinds of NP effects on the diHiggs process via gluon fusion.

$$
\kappa_{\lambda}=-0.5,5.5
$$

1. New κ_{λ}

$$
\text { for } \frac{\sigma}{\sigma_{\mathrm{SM}}}(g g \rightarrow H H)=3
$$

2. New spin-0 or spin-2 particle
3. New colored fermions

There are 3 kinds of NP effects on the diHiggs process via gluon fusion.

1. New κ_{λ}
2. New spin-0 or spin-2 particle
3. New colored fermions

There are 3 kinds of NP effects on the diHiggs process via gluon fusion.

1. New κ_{λ}
2. New spin-0 or spin-2 particle
3. New colored fermions

(Narrow) resonances can be identified through 2D bump hunt.

1. New κ_{λ}
2. New spin-0 or spin-2 particle

	$\mathbf{H} \rightarrow \mathbf{b} \overline{\mathbf{b}}$ mass	Resonance mass
Signal	Peak at m_{H}	Peak at m_{x}
Bkg.	Smooth at m_{H}	Smoothly falling

3. New colored fermions

If the non-resonant diHiggs rate is large, can we distinguish anomalous $\kappa \lambda$ from the loopinduced effects?

Such a large loop

 effect?

2. 2HDM with VLQs for $\sigma / \sigma_{s m}=3$

We consider the type-II 2HDM with softly broken Z2 symmetry and CP invariance.

$$
\begin{aligned}
& \Phi_{a}=\binom{\phi_{a}^{+}}{\frac{v_{a}+\rho_{a}+i \eta_{a}}{\sqrt{2}}}, \quad a=1,2 \\
& \Phi_{1} \rightarrow \Phi_{1} \text { and } \Phi_{2} \rightarrow-\Phi_{2}
\end{aligned}
$$

$$
h_{\mathrm{SM}}=s_{\beta-\alpha} h+c_{\beta-\alpha} H
$$

We also introduce both doublets and singlets of VLQs.

VLF doublet: $\mathcal{Q}_{L}=\binom{\mathcal{U}_{L}^{\prime}}{\mathcal{D}_{L}^{\prime}}, \mathcal{Q}_{R}=\binom{\mathcal{U}_{R}^{\prime}}{\mathcal{D}_{R}^{\prime}}$,
VLF singlets: $\mathcal{U}_{L}, \quad \mathcal{U}_{R}, \quad \mathcal{D}_{L}, \quad \mathcal{D}_{R}$.

Crucial to allow the Higgs Yukawa couplings

Yukawa interactions yield two VLQ mixing angles, and 4 VLQ mass eigenstates.

$$
\begin{aligned}
-\mathcal{L}_{\text {Yuk }} & =M_{\mathcal{F}} \overline{\mathcal{Q}} \mathcal{Q}+M_{\mathcal{U}} \overline{\mathcal{U}} \mathcal{U}+M_{\mathcal{D}} \overline{\mathcal{D}} \mathcal{D} \\
& +\left[Y_{\mathcal{D}} \overline{\mathcal{Q}} \Phi_{1} \mathcal{D}+Y_{\mathcal{U}} \overline{\mathcal{Q}} \widetilde{\Phi}_{2} \mathcal{U}+\text { h.c. }\right]
\end{aligned}
$$

$$
\mathbb{M}_{\mathcal{D}}=\left(\begin{array}{cc}
M_{\mathcal{Q}} & \frac{1}{\sqrt{2}} Y_{\mathcal{D}} v c_{\beta} \\
\frac{1}{\sqrt{2}} Y_{\mathcal{D}} v c_{\beta} & M_{\mathcal{D}}
\end{array}\right), \quad \mathbb{M}_{\mathcal{U}}=\left(\begin{array}{cc}
M_{\mathcal{Q}} & \frac{1}{\sqrt{2}} Y_{\mathcal{U}} v s_{\beta} \\
\frac{1}{\sqrt{2}} Y_{\mathcal{U}} v s_{\beta} & M_{\mathcal{U}}
\end{array}\right) .
$$

$$
\mathcal{F}_{i}=\mathcal{U}_{1}, \mathcal{U}_{2}, \mathcal{D}_{1}, \mathcal{D}_{2}
$$

Constraint 1: Single Higgs data

1. Alignment limit: SM-like Higgs sector

$$
\begin{aligned}
& \alpha=\beta-\frac{\pi}{2} \quad \text { (alignment limit) } \\
\longrightarrow & \kappa_{u}=\kappa_{d}=1,
\end{aligned}
$$

2. Wrong-sign limit: extended Higgs sector

$$
\begin{aligned}
& \alpha=\frac{\pi}{2}-\beta \quad \text { (exact wrong-sign limit) } \\
\longrightarrow & \kappa_{u}=1, \quad \kappa_{d}=-1
\end{aligned}
$$

Correlation with the single Higgs rate is crucial in allowing $\sigma / \sigma_{\text {sм }}=3$.

Higgs-fermion Yukawa coupling

Higgs boson self-coupling

To avoid strong correlation with the single Higgs rate, we take the wrong-sign limit.

Scatter plot study $\quad M_{\mathcal{U}_{1,2}}, M_{\mathcal{D}_{1,2}}>600 \mathrm{GeV}, \quad \bar{Y}_{\mathcal{U}}\left(\equiv Y_{\mathcal{U}} s_{\beta}\right), \quad \bar{Y}_{\mathcal{D}}\left(\equiv Y_{\mathcal{D} c_{\beta}}\right)<4 \pi$.

VLQ effects on triangle

Red dots: EWPD
Grey regions: NO
Blue values: $\sigma / \sigma_{s m}=3$
Strong correlation

To avoid strong correlation with the single Higgs rate, we take the wrong-sign limit.

Scatter plot study

$$
M_{\mathcal{U}_{1,2}}, M_{\mathcal{D}_{1,2}}>600 \mathrm{GeV}, \quad \bar{Y}_{\mathcal{U}}\left(\equiv Y_{\mathcal{U}} s_{\beta}\right), \quad \bar{Y}_{\mathcal{D}}\left(\equiv Y_{\mathcal{D}} c_{\beta}\right)<4 \pi .
$$

VLQ effects on triangle

Almost independent

Constraint 2: Peskin-Takeuchi oblique parameters

Ansatz $\quad M_{\mathcal{U}_{1}}=M_{\mathcal{D}_{1}}, \quad M_{\mathcal{U}_{2}}=M_{\mathcal{D}_{2}}, \quad \theta_{\mathcal{U}}=\theta_{\mathcal{D}}$.

Our benchmark

benchmark: $\beta+\alpha=\frac{\pi}{2}, \quad t_{\beta}=5$,

$$
M_{1}=600 \mathrm{GeV}, \quad \Delta M=900 \mathrm{GeV}, \quad \theta=0.6
$$

4. Results

Distinction is possible through kinematic distributions.

(1) Bump structures: The positions of two bumps are related.

(2) Slow fall in high $\mathrm{M}_{\boldsymbol{H}}$ and p_{T} regions.

Loop-induced signal have more data in high pT region.

$\frac{\sigma\left(g g \rightarrow h h ; p_{T}^{h}>300 \mathrm{GeV}\right)}{\sigma_{\mathrm{tot}}(g g \rightarrow h h)}=\left\{\begin{aligned} 6.1 \%, & (\mathrm{SM}) \\ 14.5 \%, & (\mathrm{VLQ}-2 H D M) \\ 3.2 \%, & \left(\kappa_{\lambda}=-0.5\right) \\ 1.2 \% . & \left(\kappa_{\lambda}=5.5\right)\end{aligned}\right.$

Shall the characteristic features remain after the full simulation?

HH branching fractions

4b mode

- at least $4 b$ jets with $p_{T}>40 \mathrm{GeV}$ and $\left|\eta^{b}\right|<2.5$
- Two di-b-jet systems with $\Delta R<1.5$.

The answer is yes!

Double differential cross sections show the difference more clearly.

$$
\kappa_{\lambda}=-0.5
$$

VLQ

$$
\kappa_{\lambda}=5.5
$$

Clear difference: loop effects around high M(4b) and pT(b)

5. Conclusions

Unique features of the loop-induced effects on the non-resonant diHiggs process

Correlated bumps in M(hh) and $\mathrm{pT}(\mathrm{h})$ mostly in high $\mathrm{M}(\mathrm{HH})$ and $\mathrm{p}_{\mathrm{T}}(\mathrm{H})$

