HPNP Special Edition 2021 2021. 3. 25.

How to unscramble the NP effects on the nonresonant diHiggs process at the LHC

> Jeonghyeon Song (Konkuk University, Korea)

w/ K.Cheung, A.Jueid, C.Lu, Y.W. Yoon, PRD 103 (2021)

1. Motivation

- 2. Driving question
- 3. 2HDM with VLQs
- 4. Results
- 5. Conclusions

1. Motivation

Higgs couplings in the SM are well defined, associated with the masses.

$$\Phi(x) \to e^{-i\theta_a(x)\tau^a(x)} \Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H(x) \end{pmatrix}$$

 $\sim H$

Higgs couplings in the SM are well defined, associated with the masses.

$$\Phi(x) \to e^{-i\theta_a(x)\tau^a(x)} \Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+H(x) \end{pmatrix}$$

The couplings involving a single Higgs boson are measured to be SM-like.

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 24.5 - 79.8 \text{ fb}^{-1}$ $m_{ii} = 125.09 \text{ GeV}, v < 2.5$	Stat.		Syst.	SM	
$p_{SM}^{''} = 71\%$		Total	Stat.	Syst.	
ggF γγ 📥	0.96	± 0.14 (±0.11,	+ 0.09 - 0.08	
ggF ZZ	1.04	+ 0.16 - 0.15 (±0.14,	± 0.06)	
ggF WW 📥	1.08	± 0.19 (±0.11,	± 0.15)	
ggFττ ι	0.96	+ 0.59 - 0.52 (+0.37 -0.36,	+ 0.46 - 0.38)	
ggF comb.	1.04	± 0.09 (±0.07,	+ 0.07 - 0.06)	
VBF γγ μ	1.39	+ 0.40 - 0.35 (+ 0.31 - 0.30,	+ 0.26 - 0.19)	
VBF ZZ	2.68	+ 0.98 - 0.83 (+0.94 -0.81,	+ 0.27 - 0.20)	
	0.59	+ 0.36 - 0.35 (+0.29 -0.27,	± 0.21)	
VBF ττ μ	1.16	+ 0.58 - 0.53 (+0.42 -0.40,	+ 0.40 - 0.35)	
VBF bb	3.01	+ 1.67 - 1.61 (+ 1.63 - 1.57,	+ 0.39 - 0.36)	
VBF comb.	1.21	+ 0.24 - 0.22 (+ 0.18 - 0.17,	+ 0.16 - 0.13)	
VH γγ ι ματ ι	1.09	+ 0.58 - 0.54 (+0.53 -0.49,	+ 0.25 - 0.22)	
VH ZZ	0.68	+ 1.20 - 0.78 (+1.18 -0.77,	+ 0.18 - 0.11)	
VH bb 🖬 🚘 I	1.19	+ 0.27 - 0.25 (+ 0.18 - 0.17,	+ 0.20 - 0.18)	
VH comb.	1.15	+ 0.24 - 0.22 (±0.16,	+ 0.17 - 0.16)	
ttH+tH γγ	1.10	+ 0.41 - 0.35 (+0.36 -0.33,	+0.19 -0.14)	
ttH+tH VV	1.50	+ 0.59 - 0.57 (+0.43 -0.42,	+ 0.41 - 0.38)	
	1.38	+ 1.13 - 0.96 (+0.84 -0.76,	+ 0.75 - 0.59)	
ttH+tH bb ⊨	0.79	+ 0.60 - 0.59 (±0.29,	± 0.52)	
ttH+tH comb.	1.21	+ 0.26 - 0.24 (±0.17,	+ 0.20 - 0.18)	
2 0 2 4		6		8	
Parameter normalized to SM value					

Trilinear Higgs coupling is the first target among unmeasured couplings.

H

DiHiggs process via gluon fusion at the LHC has the best chance to probe κ_{λ} .

Dedicated searches for the diHiggs process have been performed by ATLAS and CMS.

CMS, 2011.12373

ATLAS, 1906.02025

Destructive interference suppresses the diHiggs signal rate in the SM.

$$\begin{aligned} \frac{d\hat{\sigma}(gg \to HH)}{dt} \\ &= \frac{\alpha_s^2}{2^{15}\pi^3 v^4} \frac{|F_1(s, t, u, m_t^2)|^2 + |F_2(s, t, u, m_t^2)|^2}{s^2}, \end{aligned}$$

LET (Low Energy Theorem):

$$\begin{array}{l} \text{Box} \quad \text{Triangle} \\ F_1(s, t, u, m_t^2)|_{\text{LET}} \rightarrow \left(-\frac{4}{3} + \frac{4m_H^2}{s - m_H^2}\right)s, \end{array}$$

$$F_2(s, t, u, m_t^2)|_{\text{LET}} \rightarrow 0.$$
_{Box}

\sqrt{s}	$13 { m TeV}$	$14 { m TeV}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH

 λ_{hhh}

2. Driving question

If the diHiggs rate is larger than the SM prediction, can we tell the NP origin?

For illustrative purpose, we make 2 assumptions.

1.
$$\kappa_{Hij} = 1$$
 for all SM particles.

2.
$$\frac{\sigma}{\sigma_{\rm SM}}(gg \to HH) = 3.$$

There are 3 kinds of NP effects on the diHiggs process via gluon fusion.

2. New spin-0 or spin-2 particle

3. New colored fermions

There are 3 kinds of NP effects on the diHiggs process via gluon fusion.

1. New κ_{λ}

2. New spin-0 or spin-2 particle

3. New colored fermions

There are 3 kinds of NP effects on the diHiggs process via gluon fusion.

1. New κ_{λ}

2. New spin-0 or spin-2 particle

3. New colored fermions

(Narrow) resonances can be identified through 2D bump hunt.

If the non-resonant diHiggs rate is large, can we distinguish anomalous $\kappa\lambda$ from the loopinduced effects?

Such a large loop effect?

2. 2HDM with VLQs for $\sigma/\sigma_{SM}=3$

We consider the type-II 2HDM with softly broken Z2 symmetry and CP invariance.

$$\Phi_a = \left(\begin{array}{c} \phi_a^+ \\ \frac{v_a + \rho_a + i\eta_a}{\sqrt{2}} \end{array} \right), \quad a = 1, 2.$$

 $\Phi_1 \rightarrow \Phi_1 \text{ and } \Phi_2 \rightarrow -\Phi_2$

$$h_{\rm SM} = s_{\beta-\alpha}h + c_{\beta-\alpha}H.$$

We also introduce both doublets and singlets of VLQs.

VLF doublet :
$$\mathcal{Q}_L = \begin{pmatrix} \mathcal{U}'_L \\ \mathcal{D}'_L \end{pmatrix}, \ \mathcal{Q}_R = \begin{pmatrix} \mathcal{U}'_R \\ \mathcal{D}'_R \end{pmatrix},$$

VLF singlets : $\mathcal{U}_L, \ \mathcal{U}_R, \ \mathcal{D}_L, \ \mathcal{D}_R.$

Crucial to allow the Higgs Yukawa couplings

Yukawa interactions yield two VLQ mixing angles, and 4 VLQ mass eigenstates.

$$-\mathcal{L}_{\text{Yuk}} = M_{\mathcal{F}}\overline{\mathcal{Q}}\mathcal{Q} + M_{\mathcal{U}}\overline{\mathcal{U}}\mathcal{U} + M_{\mathcal{D}}\overline{\mathcal{D}}\mathcal{D}$$
$$+ \left[Y_{\mathcal{D}}\overline{\mathcal{Q}}\Phi_{1}\mathcal{D} + Y_{\mathcal{U}}\overline{\mathcal{Q}}\widetilde{\Phi}_{2}\mathcal{U} + \text{h.c.}\right]$$

$$\mathbb{M}_{\mathcal{D}} = \begin{pmatrix} M_{\mathcal{Q}} & \frac{1}{\sqrt{2}} Y_{\mathcal{D}} v c_{\beta} \\ \frac{1}{\sqrt{2}} Y_{\mathcal{D}} v c_{\beta} & M_{\mathcal{D}} \end{pmatrix}, \quad \mathbb{M}_{\mathcal{U}} = \begin{pmatrix} M_{\mathcal{Q}} & \frac{1}{\sqrt{2}} Y_{\mathcal{U}} v s_{\beta} \\ \frac{1}{\sqrt{2}} Y_{\mathcal{U}} v s_{\beta} & M_{\mathcal{U}} \end{pmatrix}$$

$$\mathcal{F}_i = \mathcal{U}_1, \mathcal{U}_2, \mathcal{D}_1, \mathcal{D}_2$$

Constraint 1: Single Higgs data

1. Alignment limit: SM-like Higgs sector

$$\alpha = \beta - \frac{\pi}{2} \quad \text{(alignment limit)}$$
$$\longrightarrow \ \kappa_u = \kappa_d = 1,$$

2. Wrong-sign limit: extended Higgs sector

$$\alpha = \frac{\pi}{2} - \beta$$
 (exact wrong-sign limit)
 $\rightarrow \kappa_u = 1, \quad \kappa_d = -1$

Correlation with the single Higgs rate is crucial in allowing $\sigma/\sigma_{SM}=3$.

To avoid strong correlation with the single Higgs rate, we take the wrong-sign limit.

Scatter plot study $M_{\mathcal{U}_{1,2}}, M_{\mathcal{D}_{1,2}} > 600 \text{ GeV}, \quad \bar{Y}_{\mathcal{U}}(\equiv Y_{\mathcal{U}}s_{\beta}), \quad \bar{Y}_{\mathcal{D}}(\equiv Y_{\mathcal{D}}c_{\beta}) < 4\pi.$

Red dots: EWPD Grey regions: NO Blue values: σ/σ_{SM}=3

Strong correlation

To avoid strong correlation with the single Higgs rate, we take the wrong-sign limit.

Scatter plot study

 $M_{\mathcal{U}_{1,2}}, M_{\mathcal{D}_{1,2}} > 600 \text{ GeV}, \quad \bar{Y}_{\mathcal{U}}(\equiv Y_{\mathcal{U}}s_{\beta}), \ \bar{Y}_{\mathcal{D}}(\equiv Y_{\mathcal{D}}c_{\beta}) < 4\pi.$

Almost independent

Constraint 2: Peskin-Takeuchi oblique parameters

Ansatz $M_{\mathcal{U}_1} = M_{\mathcal{D}_1}, \quad M_{\mathcal{U}_2} = M_{\mathcal{D}_2}, \quad \theta_{\mathcal{U}} = \theta_{\mathcal{D}}.$

Our benchmark

benchmark:
$$\beta + \alpha = \frac{\pi}{2}, \quad t_{\beta} = 5,$$

 $M_1 = 600 \text{ GeV}, \quad \Delta M = 900 \text{ GeV}, \quad \theta = 0.6.$

4. Results

Distinction is possible through kinematic distributions.

(1) Bump structures: The positions of two bumps are related.

 $2M_{\rm VLQ}$

 $M_{\rm VLQ}$

(2) Slow fall in high M_{HH} and p_T regions.

Loop-induced signal have more data in high pT region.

$$\frac{\sigma(gg \to hh; p_T^h > 300 \text{ GeV})}{\sigma_{\text{tot}}(gg \to hh)} = \begin{cases} 6.1\%, & (\text{SM}) \\ 14.5\%, & (\text{VLQ-2HDM}) \\ 3.2\%, & (\kappa_\lambda = -0.5) \\ 1.2\%. & (\kappa_\lambda = 5.5) \end{cases}$$

Shall the characteristic features remain after the full simulation?

- at least 4 b jets with $p_T > 40$ GeV and $|\eta^b| < 2.5$
- Two di-*b*-jet systems with $\Delta R < 1.5$.

The answer is yes!

Double differential cross sections show the difference more clearly.

SM

VLQ

-2

 $/GeV^2$)

5. Conclusions

- Unique features of the loop-induced effects on the non-resonant diHiggs process
 - Correlated bumps in M(hh) and pT(h)
 - mostly in high M(HH) and $p_T(H)$

