

Lepton as the source of EW baryogenesis

Theory and experimental signals

Ke-Pan Xie (谢柯盼) Seoul National University, Korea 2021.3.26 @HPNP2021, Osaka University, Japan (online)

JHEP 02 (2021) 090 [arXiv: 2011.04821]

• Matter-antimatter asymmetry

There is almost no primordial antimatter in the Universe.

Three important facts:

- 1. Right after after reheating $\eta_B \approx 0$.
- 2. An $\eta_B \approx 10^{-10}$ is generated before Big-Bang Nucleosynthesis.

baryon-to-photon ratio η

• How to generate the baryon asymmetry?

Three conditions to generate the asymmetry: [Sakharov, 1967]

(1) Baryon number violation; (2) C/CR violation;
 (3) Departure from equilibrium.

New physics could satisfy the Sakharov conditions and generate the baryon asymmetry (known as **baryogenesis**). Baryogenesis can happen at any scale between reheating and BBN. This talk: baryogenesis at EW scale; which needs a strong 1^{ste}order EW phase transition --

• EW baryogenesis: 4 steps

• The most popular scenario: top quark transport

[M. Joyce *et al*, PRL1995]

Alternative scenario: the *τ* lepton transport

[Jordy de Vries et al, JHEP2018]

 τ-mediated EW baryogenesis with Higgs+singlet^{This} talk!

5 parameters, 2 fixed by M_h = 125 GeV and v = 246 GeV. Barrier for EWPT

• *τ*-mediated EW baryogenesis with Higgs+singlet

Ke-Pan Xie (谢柯盼), Seoul Nat'l U.

Collider phenomenology

Conclusion

We propose an EW baryogenesis model:

The 1st-order EWPT is induced by SM extended with a singlet;
 The chiral asymmetry is meditated by *t* lepton transport.

This model has experimental signals:

□ The gravitational waves from EWPT is detectable at future detectors such as LISA;

The 4τ **final state** can be efficiently probed at the LHC or future colliders.

Backup

Details of BP1 and BP2

Details of cut flow

Unit: fb		Signal BP1	Signal BP2	$W^{\pm} + ext{jets}$	$Z + ext{jets}$	$t \overline{t}$	$W^{\pm} au^{+} au^{-}j$	$ au^+ au^-+ ext{jets}$	$\tau^+ \tau^- \tau^+ \tau^-$
	Before	12.3	1.19	1.45×10^6	$6.18 imes 10^5$	1.21×10^5	129	1.49×10^5	7.15
$14 { m ~TeV}$	Cut I	1.76	0.352	$2.43 imes 10^5$	$5.91 imes 10^4$	$6.73 imes 10^4$	34.5	$6.35 imes 10^3$	0.511
LHC	Cut II	0.0733	0.0269	0.832	3.28	3.41	0.152	0.841	0.0378
	Cut III	0.0661	0.0245	0.681	2.64	0.243	0.134	0.762	0.0356
	Before	42.7	5.30	4.10×10^6	1.59×10^6	1.06×10^6	321	$3.34 imes 10^5$	13.4
$27 { m ~TeV}$	Cut I	6.74	1.64	$6.66 imes 10^5$	1.69×10^5	5.55×10^5	95.8	$1.72 imes 10^4$	1.19
HE-LHC	Cut II	0.267	0.115	2.54	13.9	45.7	0.369	2.23	0.0724
	Cut III	0.245	0.103	2.05	10.9	9.14	0.315	1.87	0.0635

• Collider phenomenology: the 4τ final state

Pair production of the singlet at a pp collider

The decay of τ : leptonic (35%) and hadronic (65%) Consequently, the 4τ final state yields

• Collider phenomenology: the 4τ final state

Search for the <u>1 lepton + 3 τ -jet</u> channel.

Cut I: 1 lepton + 3 jets; Cut II: 3 τ -jets; Cut III: *b*-veto.

Main SM backgrounds: V + jets and V + τ s, ttbar.

If an excess is obtained, further observables can be constructed to reveal the CP structure.^[See 2012.13922]