A CASE STUDY ON *bbh* **ASSOCIATED PRODUCTION**

HPNP, March 25th 2021 Zhuoni Qian

Based on work with Christophe Grojean, Ayan Paul (arXiv: 2011.13945)

its physics implication, and machine interpretation

Higgs couplings and *bbh*

Standard Model of Elementary Particles

- $\circ~$ Bottom Yukawa measurement is a recent achievement: $Vh,h \rightarrow b \overline{b}$
- The sign (or phase) of the Yukawa couplings have not been well measured
- There are possible interplays between Yukawa phases of various couplings in EDM measurements and collider physics

(Multi-channel) Signal embedded in large backgrounds

Goal: measure bottom-Yukawa couplings

Traditional cut-based analysis cannot separate the different $b\overline{b}h$ contributions – no y_b sensitivity at HL-LHC

Basic selection (14 TeV HL-LHC): signals

Channel	LO σ (fb)	NLO-k-fact	$6 \mathrm{ab}^{-1}$ [#evt]	2b-jets[%]			
y_b^2	0.0648	1.5	583	7.7%			
y_by_t	-0.00829	1.9	-95	4.0%			
y_t^2	0.123	2.5	1,840	12%			
Zh	0.0827	1.3	645	21%			
$\sum b ar{b} h$	0.262	-	2,970	-			
$bar{b}\gamma\gamma$	12.9	1.5	116,000	14%			
and the second							

bbh background

QCD-QED background

 $p_T^{bjet} > 30 \,\text{GeV}, \ p_T^{\gamma jet} > 20 \,\text{GeV},$ $\eta_{bjet,\gamma jet} < 2.5, \ 110 < m_{\gamma\gamma} \,(\text{GeV}) < 140.$

Observable and distributions:

Understanding differences in shapes

- $p_T^{b_1}, p_T^{b_2}, p_T^{\gamma_1}, p_T^{\gamma\gamma},$
- $\eta_{b_{j1}}, \eta_{b_{j2}}, \eta_{\gamma_1}, \eta_{\gamma\gamma},$
- $n_{bjet}, n_{jet}, \Delta R_{\min}^{b\gamma}, \Delta \phi_{\min}^{bb},$
- $m_{\gamma\gamma}, m_{bb}, m_{b_1h}, m_{b\overline{b}h}, H_T$.

The choice of variables is important:

- Momenta four vectors are not easily interpretable
- Kinematic variables are interpretable but there is no clear "complete set"

Into higher dimensions (the correlation):

• The multi-channel multivariable correlation pattern. MVAs (BDT, NN) > ID cuts <= higher order correlation Importance of observables measure

Analysis optimised with BDT classification:

Predicted no. of events at HL-LHC					Predicted no. of events at FCC-hh									
Channel	$ y_b^2$	y_by_t	y_t^2	Zh	$bb\gamma\gamma$	total	nts		y_b^2	$y_b y_t$	y_t^2	Zh	$bb\gamma\gamma$	
y_b^2	170	54	51	122	189	586	eve	y_b^2	32,074	$15,\!112$	10,966	6,579	8,959	
$5 y_b y_t$	-7	-24	-4	-20	-40	-95	of	$y_b y_t$	-964	$-6,\!815$	-907	-583	$-1,\!820$	
y_t^2	238	112	452	546	487	1,835	i	y_t^2	48,772	$45,\!751$	$148,\!669$	$39,\!598$	$26,\!484$	
Zh	22	28	21	416	161	648	ln	Zh	1,860	$4,\!498$	$2,\!280$	$12,\!661$	$2,\!282$	
$bb\gamma\gamma$	$2,\!183$	$2,\!450$	151	8,045	$101,\!591$	115,779	tua	$bb\gamma\gamma$	172,088	$373,\!436$	$106,\!335$	$126,\!429$	$7,\!952,\!834$	8
$\overline{\mathcal{Z}_j}$	3.33	0.47	10.	4.36	317		Act	\mathcal{Z}_j	63.7	10.4	288	29.4	2,813	
$ N_{ii} $														
$\mathcal{Z}_j = \frac{ N_{jj} }{\sqrt{\sum_i N_{ij}}}$														

About ~60% gain in significance over traditional cut-based analyses (2σ).

$$\mathcal{Z}_j = \frac{|N_{jj}|}{\sqrt{\sum_i N_{ij}}}$$

About ~60% gain in significance over traditional cut-based analyses.

Physics Interpretation: real bottom Yukawa κ -scheme $\mathcal{L} \supset -\kappa_b \frac{m_b}{m} \bar{b}bh$

Figure 7. Significance, \mathcal{Z} , as a function of κ_b at HL-LHC (ATLAS+CMS combined, 6 ab^{-1}) and FCC-hh (30 ab^{-1}). A SM signal is injected.

=> Unambiguous sign determination at FCC-hh.

Physics Interpretation: complex bottom Yukawa (CP-phase) $\mathcal{L} \supset -\frac{m_b}{v}(\kappa_b \bar{b}b + i \tilde{\kappa}_b \bar{b} \gamma_5 b)h$

Machine Interpretation (zh-yb2):

Machine Interpretation (zh-yb2):

- Cut-based analyses start to falter with multivariate correlations difficult to visualize and interpret 0
- Machine learning algorithms excel at multivariate analyses 0
- Machine learning algorithms are essentially black-boxes not good for understanding the underlying dynamics 0

Machine Interpretation (zh-yb2):

"importance of m_{b1h} variable visualised through correlation"

Machine Interpretation (full): Using shapley value:

- Calculated by SHAP on BDT model
- Shapley value: an importance "measures" of given observable, through marginalising its contribution over the observable set:

$$\phi_j(val) = \sum_{S \subseteq \{x_1, \dots, x_p\} \setminus \{x_j\}} \frac{|S|!(p-|S|-1)!}{p!} \left(val\left(S\right) \right)$$

- Feature importance: the averaged absolute value of shapley value for a given observable: $I_j = \sum_{i=1}^n |\phi_j^{(i)}|$
- Reduction of observable d.o.f ; local attribution of importance with additivity

Some Conclusions:

- Multivariate analysis are the key to distinguishing signals that cut-based analyses using only ID or low-dimension info miserably fail at.
- Multivariate methods can be better understood and supplemented with interpretable machine learning tools such as the Shapley values.
- Associated production of $b\bar{b}h$ stands to gain at FCC as its production rate grows faster than backgrounds with rising energies. => sensitivity on a complex phase of y_b can be comparable to that from $h \rightarrow b\bar{b}$.

References

Measurement of $H \rightarrow b\overline{b}$

- CMS collaboration, A. M. Sirunyan et al., Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801, [arXiv:1808.08242].

Recent theory papers on *bbh*

- N. Deutschmann, F. Maltoni, M. Wiesemann and M. Zaro, Top-Yukawa contributions to bbh production at the LHC, JHEP 07 (2019) 054, [arXiv:1808.01660].
- \circ D. Pagani, H.-S. Shao and M. Zaro, RIP Hb \overline{b} : How other Higgs production modes conspire to kill a rare signal at the LHC, arXiv:2005.10277.

Papers on Higgs couplings fits

- M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC, vol. 7, pp. 221–584. 12, 2019. arXiv:1902.00134.
- J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139, [arXiv:1905.03764].

Shapley values and interpretable machine learning

- L. S. Shapley, Notes on the n-Person Game-II: The Value of an n-Person Game, Rand Corporation (1951).
- L. S. Shapley, A Value for n-person Games. Contributions to the Theory of Games 2.28 (1953): 307-317.
- C. Molnar, Interpretable Machine Learning. Lulu, 2020. [Link]
- Wallach, R. Fergus, S. Vishwanathan et al., eds.), vol. 30, pp. 4765–4774, Curran Associates, Inc., 2017. arXiv:1705.07874.
- S. M. Lundberg, G. G. Erion and S.-I. Lee, Consistent Individualized Feature Attribution for Tree Ensembles, arXiv e-prints (Feb. 2018), [arXiv:1802.03888].
- Intelligence 2 (2020) 56-67.

• J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001, [arXiv:0802.2470]. • ATLAS collaboration, M. Aaboud et al., Observation of $H \rightarrow b\bar{b}$ decays and VH production with the ATLAS detector, Phys. Lett. B 786 (2018) 59-86, [arXiv:1808.08238].

• S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, in Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. • S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair et al., From local explanations to global understanding with explainable AI for trees, Nature Machine

Backup

Belleville Control

Additional backgrounds and discussion :

- VBF: light-jet veto kills the VBF while careful simulation is further needed.
- shape to be separate
- $gg \rightarrow Zh$: small at HL-LHC, but grows rapidly with s, and comparable but subdominant $q\bar{q} \rightarrow Zh$
 - and study in future for better control

• di-Higgs: both mbb and myy clustered around the Higgs-mass peak, distinct final state

to the yb-sensitive channels at FCC-hh. Can be further distinguished as the case of

• Fakes: ccxaa, jjxaa, caa, jjja, etc.: subdominant yet comparable to bbxaa. Needs attention

Systematics estimates:

	systematics	HL-LHC (6 ab				
		y_b^2	$y_b y_t$			
	0%	3.33	0.47			
	0.5%	3.26	0.46			
	1%	3.06	0.42			
	5%	1.41	0.18			

HL-LHC: $\phi_b = [-23.2^\circ, 23.5^\circ] = \tilde{\kappa_b} \lesssim 0.4$

Negligible improvement from bbxh study

FCC-hh:
$$\phi_b = [-15.5^\circ, 15.7^\circ] => \tilde{\kappa_b} \lesssim$$

~15% improvement from bbxh study

Comparison to: Hadronic EDM (free of electron EDM assumption): nEDM: $\sum A \kappa_q \tilde{\kappa}_q + B \tilde{\kappa}_q \kappa_q = \tilde{\kappa}_b \lesssim 5.$

Electron EDM: eEDM: $\sum A \kappa_e \tilde{\kappa}_q + B \tilde{\kappa}_e \kappa_q \implies \tilde{\kappa}_b \lesssim 0.5$

One slide on Shapley value:

The Shapley value is defined via a value function val of players in S.

The Shapley value of a feature value is its contribution to the payout, weighted and summed over all possible feature value combinations:

$$\phi_j(val) = \sum_{S \subseteq \{x_1,\ldots,x_p\} \setminus \{x_j\}} rac{|S|!\,(p-|S|-1)!}{p!}ig(val\,ig(S \cup \{x_j\}ig) - val(S)ig)$$

where S is a subset of the features used in the model, x is the vector of feature values of the instance to be explained and p the number of features. $val_x(S)$ is the prediction for feature values in set S that are marginalized over features that are not included in set S:

$$val_{x}(S)=\int \widehat{f}\left(x_{1},\ldots,x_{p}
ight)d\mathbb{P}_{x
otin S}-E_{X}(\widehat{f}\left(X
ight))$$

You actually perform multiple integrations for each feature that is not contained S. A concrete example: The machine learning model works with 4 features x1, x2, x3 and x4 and we evaluate the prediction for the coalition S consisting of feature values x1 and x3:

 $K_4)d\mathbb{P}_{X_2X_4}-E_X(\widehat{f}\left(X
ight))$

https://christophm.github.io/interpretable-ml-book/shapley.html

