Beyond the Standard Model Higgs bosons in the reach of the LHC [2103.xxxx]

Thomas Biekötter

in collaboration with Alexander Grohsjean, Sven Heinemeyer, Victor Lozano, Christian Schwanenberger and Georg Weiglein

HPNP2021, Osaka, Japan

March 25th 2021

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

New physics at the LHC?

Nat. hist. Museum Rotterdamm

Theory: Susy, inflation, baryogenesis, ...

- \Rightarrow Non-minimal scalar sectors
- \Rightarrow Presence of more than one Higgs boson

Colliders: Excesses at $\sim 3(2)\sigma$ locally(globally)

- \Rightarrow Are the excesses consistent with each other?
- \Rightarrow Can they have a common origin?
- \Rightarrow 10 times more LHC data "around the corner"

Two concrete model realizations: Higgs bosons at 400 GeV and 96 GeV in the N2HDM and the NMSSM

"The $auar{ au}$ excess" at ~ 400 GeV

"The $tar{t}$ excess" at \sim 400 GeV

Local excess of $\gtrsim 3\sigma$ at \sim 400 GeV Global significance below 2σ

Consistent with a pseudoscalar Higgs boson at $\sim 400~{\rm GeV}$

Most significant for $\Gamma_A/m_A = 4\%$ and $c_{At\bar{t}} \sim 1$, but also consistent with slightly different m_A and Γ_A/m_A $\rightarrow \chi^2_{t\bar{t}}(m_A, \Gamma_A/m_A, c_{At\bar{t}})$

Corresponding ATLAS limits only for $m_A > 500~{\rm GeV}$ and only 8 ${\rm TeV}$ data

"The 96GeV excesses" (LEP and CMS)

Many model interpretations with common origin of both excesses, including N2HDM and NMSSM see [T.B, M. Chakraborti, S. Heinemeyer: 2003.05422] for a list models

The Next-to 2 Higgs Doublet Model: N2HDM

N2HDM = 2HDM-I/II/III/IV(ϕ_1, ϕ_2) + Real Scalar Singlet(ϕ_s), \mathbb{Z}'_2 : $\phi_s \to -\phi_s$ \mathbb{Z}'_2 spontaeusly broken when $\langle \phi_s \rangle = v_s \neq 0 \Rightarrow \phi_{1,2,s}$ are mixed

Higgs sector

CP-even Higgs bosons $h_{1,2,3}$, pseudoscalar A, charged Higgs bosons H^{\pm}

1. Pseudoscalar A as the origin of the $t\bar{t}$ and the $\tau\bar{\tau}$ excesses at \sim 400 GeV

	Yukawa type	$ c_{At\bar{t}} $	$ c_{A\tau\bar{\tau}} $	$ c_{Ab\bar{b}} $	
$\tan\beta=\frac{v_1}{v_2}$	Ι	$1/\tan\beta$	$1/\tan\beta$	$1/\tan\beta$	$ auar{ au}$ can only be realized in type II In combination with $tar{t}$ excess?
	II	$1/\tan\beta$	aneta	aneta	
	III	$1/\tan\beta$	aneta	$1/\tan\beta$	
	IV	$1/\tan\beta$	$1/\tan\beta$	aneta	

2. Pseudoscalar A at 400 GeV and in addition a scalar h_1 at ~ 96 GeV? Type II and IV can realize the 96 GeV excesses \rightarrow Simultaneously also the $t\bar{t}$ or (and) [T.B, M. Chakraborti, S. Heinemeyer: 1903.11661] the $\tau\bar{\tau}$ excess

Constraints: Vacuum stability, tree-level perturbative unitarity, collider searches, h_{125} signal rates, flavour physics observables, electroweak precision observables

Codes: ScannerS, N2HDECAY, SusHi, HiggsBounds, HiggsSignals

A 400 $\,\mathrm{GeV}$ pseudoscalar in the type II N2HDM

$$\begin{split} \chi^2 &= \chi^2_{125} + \chi^2_{t\bar{t}} + \chi^2_{\tau\bar{\tau}} \text{ , we demand: } \chi^2 \leq \chi^2_{\text{SM}} \\ \text{20 GeV} &\leq \textit{m}_{h_{a,c}} \leq 1000 \text{ GeV} \text{ , } \textit{m}_{h_b} = 125.09 \text{ GeV} \text{ , } \textit{m}_A = 400 \text{ GeV} \text{ , } \\ \text{550 GeV} &\leq \textit{m}_{H^{\pm}} \leq 1000 \text{ GeV} \text{ , } 10 \text{ GeV} \leq \textit{v}_s \leq 1500 \text{ GeV} \text{ , } 0.5 \leq \tan \beta \leq 12.5 \end{split}$$

A 400 ${ m GeV}$ pseudoscalar and a 96 ${ m GeV}$ scalar in the type II N2HDM

In the N2HDM type II the pseudoscalar A can give rise to the $t\bar{t}$ excess at 400 GeV in combination with a scalar h_1 at ~ 96 GeV giving rise to the LEP and CMS excesses

(Type IV also works)

A 400 GeV pseudoscalar and a 96 GeV scalar in the type II N2HDM

In the N2HDM type II the pseudoscalar A can give rise to the $\tau\bar{\tau}$ excess at 400 GeV in combination with a scalar h_1 at ~ 96 GeV giving rise to the LEP and CMS excesses

(Type IV doesn't work)

A pseudoscalar at $\sim 400~{\rm GeV}$ in the NMSSM

The Higgs sector of the NMSSM is similar to the one of the N2HDM type II

A pseudoscalar at $\sim 400~{\rm GeV}$ in the NMSSM

Conclusions

- Pseudoscalar of the N2HDM type II can give rise to either the $t\bar{t}$ or the $\tau\bar{\tau}$ excesses \rightarrow In addition, the excesses at 96 GeV can be accommodated with a singlet-like scalar h_1 $m_{h_1} \sim 96$ GeV, $m_{h_2} = 125$ GeV, $m_A \sim 400$ GeV and $m_{h_3} \sim m_{H^\pm} \gtrsim 550$ GeV \rightarrow Very predictive
- An NMSSM pseudoscalar A_2 can be the origin of the $t\bar{t}$ excess
- \rightarrow Theory: Natural NMSSM: alignment without decoupling
- \rightarrow In addition, a singlet-like h_1 can give rise to the CMS excess
- For larger values of $\tan\beta$ the NMSSM can realize the $\tau\bar{\tau}$ excess
- \rightarrow Alignment only via decoupling
- \rightarrow Large radiative corrections in Higgs sector

Outlook: How to probe?

 $t\bar{t}$ scenarios: $gg \to \phi \to t\bar{t}$, $pp \to H^{\pm} \to tb$ (SUSY), $gg \to A \to Zh$, $gg \to H \to ZA$ (\checkmark) $\tau\bar{\tau}$ scenarios: CMS/HL-LHC searches for $\phi \to \tau\bar{\tau}$ with $139 \mathrm{fb}^{-1}/3000 \mathrm{fb}^{-1}$ \checkmark

96 GeV scenarios: Indirect h_{125} constraints, CMS $gg \rightarrow h \rightarrow \gamma\gamma$ with 139fb⁻¹, ILC (?)

THANKS!

"The Zh excess" at $\sim 400~{\rm GeV}$

