

High-temperature EW symmetry breaking: Reassessing the window for EW baryogenesis in Composite Higgs models

Oleksii Matsedonskyi

HPNP 2021

Motivation

in Standard Model: high-T symmetry restoration

in Standard Model: high-T symmetry restoration

in Electroweak Baryogenesis scenarios

in Electroweak Baryogenesis scenarios

 new physics responsible for CP violation and first-order phase transition is at a few 100 GeV scale

→ good because testable, bad (for some models) because overconstrained

What if?

What if?

- new physics responsible for CP violation and first-order phase transition is **far above** 100 GeV scale
- new phenomenology

EW Symmetry Breaking at High T

Electroweak Symmetry Non-Restoration at High T

→ EW SNR was first proposed in:

Meade, Ramani, 1807.07578 Baldes, Servant, 1807.08770 Glioti, Rattazzi, Vecchi, 1811.11740

with **new light scalars**

→ We showed how can be done with **new fermions**

OM, Servant, 2020.05174

Electroweak Symmetry Non-Restoration at High T

→ If h potential is induced by plasma of particles with h-dependent mass:

OM, Servant, 2020.05174

- Add n copies of new SM singlet Dirac fermion N

$$\mathcal{L}_N = -m_N \ \bar{N}N + \lambda_N \bar{N}Nh^2 / \Lambda$$

→ N mass is minimized at large h
 $m_N(h) = m_N - \lambda_N h^2 / \Lambda = 0$ → $h^2 = m_N \Lambda / \lambda_N$

- Add n copies of new SM singlet Dirac fermion N

$$\mathcal{L}_N = -m_N \ \bar{N}N + \lambda_N \bar{N}Nh^2 / \Lambda$$
 cutoff

N mass is minimized at large h
 m_N(h) = m_N − λ_Nh²/Λ = 0
 → h² = m_N Λ/λ_N

OM, Servant, 2020.05174

$$\mathcal{L}_N = -m_N \ \bar{N}N + \lambda_N \bar{N}Nh^2 / \Lambda$$

N mass is minimized at large h

$$m_N(h) = m_N - \lambda_N h^2 / \Lambda = 0$$
 $\longrightarrow h^2 = m_N \Lambda / \lambda_N$

OM, Servant, 2020.05174

→ High-T perturbativity implies $T_{\rm SNR}^{\rm max} \sim \sqrt{n} \, m_N$

Phenomenological Impact

work in progress Bruggisser,VonHarling,OM,Servant

→ Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration</p>

work in progress Bruggisser,VonHarling,OM,Servant

→ Usual way to get 1st order EW phase transition: add a new scalar S

work in progress Bruggisser,VonHarling,OM,Servant

→ Usual way to get 1st order EW phase transition: add a new scalar S

- → EWBG needs T < T of EW restoration</p>
- → S phase transition releases latent heat

$$T^4 \propto m_S^2$$

work in progress Bruggisser,VonHarling,OM,Servant

→ Usual way to get 1st order EW phase transition: add a new scalar S

- ➤ EWBG needs T < T of EW restoration</p>
- → S phase transition releases latent heat

$$T^4 \propto m_S^2$$

 \Rightarrow for T restoration ~130 GeV $m_S \lesssim$ O(100 GeV)

work in progress Bruggisser,VonHarling,OM,Servant

→ Usual way to get 1st order EW phase transition: add a new scalar S

- ➤ EWBG needs T < T of EW restoration</p>
- → S phase transition releases latent heat

$$T^4 \propto m_S^2$$

⇒ for T restoration ~1 TeV $m_S \lesssim$ O(few TeV)

work in progress Bruggisser,VonHarling,OM,Servant

→ Higgs is a bound state of new strong interactions

New scalar triggering the first order phase transition
 dilaton (PNGB of approximate conformal invariance)

"Automatic" Realizations

→ Are there scenarios where the new SNR states appear <u>automatically</u>?

First suspect - Twin Higgs models (Chacko et al, hep-ph/0506256) Constructed to **solve the Higgs mass naturalness** problem.

→ Are there scenarios where the new SNR states appear <u>automatically</u>?

First suspect - Twin Higgs models (Chacko et al, hep-ph/0506256) Constructed to **solve the Higgs mass naturalness** problem.

But also, twin states induce **EW symmetry breaking minimum** at high-T.

→ Are there scenarios where the new SNR states appear <u>automatically</u>?

First suspect - Twin Higgs models (Chacko et al, hep-ph/0506256) Constructed to **solve the Higgs mass naturalness** problem.

But also, twin states induce **EW symmetry breaking minimum** at high-T.

The (anyway necessary) Twin symmetry breaking by Yukawas of light quarks and/or leptons can tip the balance to the non-restoration.

(OM, 2008.13725)

→ Are there scenarios where the new SNR states appear <u>automatically</u>?

First suspect - Twin Higgs models (Chacko et al, hep-ph/0506256) Constructed to **solve the Higgs mass naturalness** problem.

But also, twin states induce **EW symmetry breaking minimum** at high-T.

→ Higgs potential **fine-tuning** in Composite Twin Higgs scenario with SNR

Summary

- The typical energy scales associated with EW baryogenesis can change substantially in the presence of new physics triggering high-T EW symmetry non-restoration.
- → From the collider physics point of view, this opens up a broad parameter space to search for EWBG traces.
- Perturbative models with EW SNR require a sizeable number of new states. One example of new physics scenarios which provides them "naturally" is the Twin Higgs models.

Thank you!

Backup slides

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

2

 \blacksquare Add n copies of new SM singlet Dirac fermion N

$$\mathcal{L}_N = -m_N^{(0)}\bar{N}N + \lambda_N\bar{N}Nh^2/\Lambda$$

N mass is minimized at large
$$h$$

 $m_N(h) = m_N^{(0)} - \lambda_N h^2 / \Lambda = 0$
 $\longrightarrow h^2 = m_N^{(0)} \Lambda / \lambda_N$

can't be done with renormalizeable interactions:

$$\delta V_h \propto \sum_i m_i^2 = \operatorname{Tr}[\mathcal{M}^{\dagger}\mathcal{M}] = \sum_{i,j} |\mathcal{M}_{ij}|^2$$

I in **renorm.** theories $|\mathcal{M}_{ij}|$ are h-independent or linear in h

$$\sum_{i,j} |\mathcal{M}_{ij}| = const_1^2 + const_2^2 h^2 \implies \min at h=0$$

work in progress Bruggisser,VonHarling,OM,Servant

+ 12 SNR fermions

proposed in Chacko,Goh,Harnic, hep-ph/0506256
 provides a solution to the Higgs mass naturalness problem with
 no QCD-charged new physics up to ~10 TeV

-> Assumes a twin sector - an approximate Z_2 copy of SM

→ Higgs is a pseudo-Nambu-Goldstone boson of a large symmetry, which accommodates both SM and Twin $SU(2)_L$

example:

➤ SM states couplings to the Higgs $\propto \frac{\sin h}{f}$ Twin states couplings to the Higgs $\propto \frac{\cos h}{f}$

- Quadratic divergences $\propto \Lambda^2$ in the Higgs mass cancel

 $\label{eq:V} V \sim f^2 \Lambda^2 (\sin^2 h/f + \cos^2 h/f) = f^2 \Lambda^2 \quad \mbox{no Higgs dependence} \\ \uparrow \qquad \uparrow \qquad \mbox{no contribution to the Higgs mass} \propto \Lambda^2 \\ \mbox{SM contribution} \qquad \mbox{Twin contribution} \end{cases}$

➤ The EW symmetry-restoring high-T SM correction is also canceled (balanced)

The resulting position of the minimum depends on weak Z_2 breaking

$$\rightarrow$$
 analyze which type of χ_2 can tilt high-T potential to SNR minimum

- Sources of X_2

 $\tilde{\lambda}_q f \bar{q} q \cos h / f$

<u>necessarily</u> broken in the light fermion sector: eg twin neutrinos cannot be light. simplest realization: larger Yukawas $\tilde{\lambda}_q$ for light twin fermions

→ This also spoils the cancellation of T=0 quadratic divergences to the Higgs mass: $\delta m_h^2 \sim (\tilde{\lambda}_q^2/16\pi^2)\Lambda^2$

take a lower cutoff
$$\Lambda$$
 in
 \Rightarrow the twin light quark \Rightarrow (no SM QCD charge) sector

→ To not spoil the Higgs mass, we need:

 $SO(8) \supset SO(4)_{\rm SM} \times SO(4)_{\rm SM}$

➤ Collider signal:

→ numerical results

Figure 2: Solid lines show the evolution of h_{SM}/T in the minimum of the Higgs potential depending on the temperature, for three choices of parameters: $\hat{\lambda}_q = 0.2$, $\hat{n}_q = 9$ (blue), $\hat{\lambda}_q = 0.5$, $\hat{n}_q = 12$ (green), and $\hat{\lambda}_q = 0.7$, $\hat{n}_q = 12$ (red).

→ Z_2 breaking leads to additional contributions to the Higgs mass

 $\delta m_h^2 \propto n_q \lambda_q^2 \Lambda^2 \leftarrow$

mass of EW-charged twin partners

→ chargino/neutralino-like signal

for twin hadron decays see: Craig,Katz,Strassler,Sundrum 1501.05310

→ experimental bounds on EW-charged twin partners

chargino/neutralino pair production with a decay to a W,Z,h and neutralino (missing Et)

→ fine-tuning

$$\Delta_{\rm BG} = \frac{\hat{n}_q y_L^2 m_7^2 \cos^2 v/f}{2\pi^2 m_h^2}$$

lower bound from a pair production of one top partner,

does not include single production or pile-up from several partners

SNR: thermal corrections

In thermal bath of particles X, what is their effect on the Higgs potential?

bosons: fermions:

$$\Delta V_b^T = \frac{T^4}{2\pi^2} J_b[m^2/T^2], \qquad \Delta V_f^T = -\frac{2T^4}{\pi^2} J_f[m^2/T^2]$$

$$J_b[x] = \int_0^\infty dk \, k^2 \log\left[1 - e^{-\sqrt{k^2 + x}}\right], \qquad J_f[x] = \int_0^\infty dk \, k^2 \log\left[1 + e^{-\sqrt{k^2 + x}}\right]$$

SNR: collider pheno

→ <u>invisible Higgs decays</u>

 ${
m BR}_{h\to NN} \sim rac{1}{n} \left(n \lambda_N rac{m_N}{\Lambda}
ight)^2 rac{v_{
m SM}^2}{m_h \Gamma_h} \quad {
m where} \qquad \Gamma_h \simeq 6 \, {
m MeV}$ requires either $n \gtrsim 10^6$ or $m_N > m_h/2$

→ Universal Higgs couplings modification from Higgs wave function renormalization $\delta Z_h \sim \frac{1}{(4\pi)^2} \frac{1}{n} \left(\frac{n\lambda_N m_N}{\Lambda}\right)^2 \frac{v^2}{m_{2*}^2} \longrightarrow$

- → Production via off-shell Higgs
 - D.Curtin et al 1409.0005

if no decay within detector, may be testable at 100TeV collider for low m_N and n