Recent progress in the calculation of the Higgs trilinear coupling in models with extended scalar sectors New Physics" Special Edition 2021

Based on JB, Kanemura, PLB 796 (2019) 38-46 & EPJC 80 (2020) 3, 227 and JB, Kanemura, Shimoda, arXiv:2011.07580 (accepted in JHEP)

Johannes Braathen

5th International Workshop "Higgs as a Probe of New Physics" Special Edition 2021 Osaka, Japan | March 25-27, 2021

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Why investigate λ_{hhh} ?

Probing the shape of the Higgs potential

- $^{\scriptscriptstyle >}$ Since the Higgs discovery, the existence of the Higgs potential is confirmed, but at the moment we only know: $V^{(0)}$
 - \rightarrow the location of the EW minimum:

v = 246 GeV

 \rightarrow the curvature of the potential around the EW minimum:

m_h = 125 GeV

However we still don't know the **shape** of the potential, away from EW minimum $\rightarrow \frac{\text{depends on } \lambda_{\text{hhh}}}{\lambda_{\text{hhh}}}$

 $λ_{hhh}$ determines the nature of the EWPT! ⇒ O(20%) deviation of $λ_{hhh}$ from its SM prediction needed to have a strongly first-order EWPT → necessary for EWBG [Grojean, Servant, Wells '04], [Kanemura, Okada, Senaha '04]

??? ??? v = 246 GeV

۶

Distinguish aligned scenarios with or without decoupling

- > Aligned scenarios already seem to be favoured \rightarrow Higgs couplings are SM-like at tree-level
- Non-aligned scenarios (e.g. in 2HDMs) could be almost entirely excluded in the close future using synergy of HL-LHC and ILC!
 - → Alignment through decoupling? or alignment without decoupling?
- > If alignment without decoupling, Higgs couplings like λ_{hhh} can still exhibit large deviations from SM predictions because of **non-decoupling effects from BSM loops**
- Current best limit (at 95% CL):
 -3.7 < λ_{hhh} /(λ_{hhh})SM < 11.5 [ATLAS-CONF-2019-049]
- > Improvement at future colliders:
 - **HL-LHC**: $\lambda_{hhh} / (\lambda_{hhh})^{SM}$ within ~ 50-100%;
 - At lepton colliders ILC, CLIC within some tens of %;
 - At a 100-TeV hadron collider, down to 5-7%

see also backup and [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Roloff et al., 1901.05897], [Chang et al. 1804.07130,1908.00753], *etc.*

Non-decoupling effects at one loop

One-loop non-decoupling effects

First found in 2HDM: [Kanemura, Kiyoura, Okada, Senaha, Yuan '02]

 \mathcal{M} : BSM mass scale, e.g. soft breaking scale M of Z_2 symmetry in 2HDM n_Φ : # of d.o.f of field Φ

* Size of new effects depends on how the BSM scalars acquire their mass: $m_{\Phi}^2 \sim {\cal M}^2 + \lambda v^2$

$$\left(1 - \frac{\mathcal{M}^2}{m_{\Phi}^2}\right)^3 \longrightarrow \begin{cases} 0, \text{ for } \mathcal{M}^2 \gg \tilde{\lambda}v^2 \\ 1, \text{ for } \mathcal{M}^2 \ll \tilde{\lambda}v^2 & \longrightarrow \end{cases} \begin{array}{c} \text{Huge BSM} \\ \text{effects possible!} \end{cases}$$

One-loop non-decoupling effects

One-loop results for λ_{hhh}

 Deviations of λ_{hhh} by several hundred percent w.r.t SM prediction can occur at one loop in wide range of BSM theories – 2HDM, IDM, singlet models, triplet model – without violating unitarity!

Classical scale invariant models: additional symmetry entirely fixes the one-loop Higgs potential $\Rightarrow \underbrace{\text{Universal one-loop result in CSI theories!}}_{(detailed derivation in backup)} \left((\lambda_{hhh}^{\text{CSI}})^{1-\text{loop}} = \frac{5[M_h^2]_{V_{\text{eff}}}}{v} = \frac{5}{3} (\lambda_{hhh}^{\text{SM}})^{\text{tree}} \right)$

> What happens at two loops??

Our results

Our calculations

- > We want to know **how large** the two-loop corrections to λ_{hhh} can become:
 - *Effective Higgs trilinear coupling* (i.e. neglect subleading effects from ext. momentum)

$$\lambda_{hhh} \equiv \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \bigg|_{\text{min.}}$$

- Dominant two-loop corrections to V_{eff} = diagrams involving heavy BSM scalars and top quark
- Aligned scenarios \rightarrow no mixing + compatible with experimental results
- Several models investigated: (aligned) 2HDM, IDM, singlet extension, CSI-2HDM, CSI N-scalar model
- Numerical results in the following:

$$\delta R \equiv \frac{\hat{\lambda}_{hhh}^{\rm BSM} - \hat{\lambda}_{hhh}^{\rm SM}}{\hat{\lambda}_{hhh}^{\rm SM}}$$

BSM deviation of λ_{hhh} in an aligned 2HDM

Taking degenerate BSM scalar masses: M_a

[JB, Kanemura 1903.05417]

• $\tilde{M} = 0 \rightarrow maximal non$ decoupling effects

• $\delta^{(2)}\lambda_{hhh}$ typically 10-20% of $\delta^{(1)}\lambda_{hhh}$ for most of mass range, at most 30%

Maximal BSM deviation in an aligned 2HDM scenario

[JB, Kanemura 1911.11507]

- Maximal δR (1I+2I) allowed while fulfilling perturbative unitarity [Kanemura, Kubota, Takasugi '93]
- Max. deviations for low tan β and M_{ϕ}~600-800 GeV \rightarrow heavy BSM scalars acquiring their mass from Higgs VEV **only**
 - > 1 loop: up to \sim 300% deviation at most
 - 2 loops: additional 100% (for same points)
- For increasing tan β , unitarity constraints become more stringent \rightarrow smaller δR
- Blue region: probed at HL-LHC (50% accuracy on λ_{hhh})
- Green region: probed at lepton colliders, e.g. ILC (50% accuracy at 250 GeV; 27% at 500 GeV; 10% at 1 TeV)

Maximal BSM deviation in an aligned 2HDM scenario

[JB, Kanemura 1911.11507]

- Maximal δR (1I+2I) allowed while fulfilling perturbative unitarity [Kanemura, Kubota, Takasugi '93]
- Max. deviations for low tan β and M_{ϕ}~600-800 GeV \rightarrow heavy BSM scalars acquiring their mass from Higgs VEV **only**
 - > 1 loop: up to \sim 300% deviation at most
 - > 2 loops: additional 100% (for same points)
- For increasing tan β , unitarity constraints become more stringent \rightarrow smaller δR
 - **Blue region:** probed at **HL-LHC** (50% accuracy on λ_{hhh})
 - **Green region:** probed at lepton colliders, e.g. **ILC** (50% accuracy at 250 GeV; 27% at 500 GeV; 10% at 1 TeV)

Maximal BSM deviation in an aligned 2HDM scenario

[JB, Kanemura 1911.11507]

- Maximal δR (1I+2I) allowed while fulfilling perturbative unitarity [Kanemura, Kubota, Takasugi '93]
- Max. deviations for low tan β and M_{ϕ}~600-800 GeV \rightarrow heavy BSM scalars acquiring their mass from Higgs VEV **only**
 - > 1 loop: up to \sim 300% deviation at most
 - 2 loops: additional 100% (for same points)
- For increasing tan β , unitarity constraints become more stringent \rightarrow smaller δR
- Blue region: probed at HL-LHC (50% accuracy on λ_{hhh})

Green region: probed at lepton colliders, e.g. **ILC** (50% accuracy at 250 GeV; 27% at 500 GeV; 10% at 1 TeV)

Comparing λ_{hhh} in 2HDM scenarios with or without CSI

Taking degenerate BSM masses: $M_{\phi} = M_{H} = M_{A} = M_{H}^{+}$

[JB, Kanemura, Shimoda '20] see also Makoto Shimoda's poster (this morning JST)

Allowed range of BSM deviations in a CSI-2HDM

Perturbative unitarity and M_b strongly constrain the allowed range of BSM parameters! [JB, Kanemura, Shimoda '20] 110 100 δR [%] 90 80 ► To correctly reproduce M_b=125 GeV 2/, $\tan\beta = \tan\beta(M_{\Phi})$ $(M_h \text{ loop generated in CSI theories})$ 1/ 70 374 376 378 380 382 Range of M_{ϕ} constrained by M_{th} [GeV] pert. unitarity and M_b

Allowed range of BSM deviations in a CSI-2HDM

Comparing λ_{hhh} in 2HDM scenarios with or without CSI

Summary

Explicit two-loop calculation of λ_{hhh} in theories with extended scalar sectors

$^{\scriptscriptstyle \triangleright}$ Two-loop corrections amount typically to 10-20% of one-loop contributions (max. ~ 30%)

 \Rightarrow Non-decoupling effects found at one loop are **not drastically changed**

⇒ Computations beyond one loop will be **necessary** given the expected accuracy of the measurement of λ_{hhh} at future colliders – **HL-LHC** (50% acc.), **ILC** (27% at 500 GeV, down to 10% at 1 TeV), etc.

⇒ Precise calculation of Higgs couplings (λ_{hhh} , etc.) can allow distinguishing aligned scenarios with or without decoupling, by accessing non-decoupling effects!

- New results for CSI theories in [JB, Kanemura, Shimoda '20] (see also Makoto Shimoda's poster presentation!)
 - ⇒ Two-loop corrections allow distinguishing different scenarios with CSI
 - ⇒ Separate models with or without CSI difficult with only λ_{hhh} , but possible with **synergy** of λ_{hhh} and either collider or GW signals (see e.g. [Hashino, Kakizaki, Kanemura, Matsui '16])

Thank you for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron

Johannes Braathen DESY Theory group johannes.braathen@desy.de

www.desy.de

DESY.

Backup slides

see also [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Roloff et al., 1901.05897], [Chang et al. 1804.07130,1908.00753], *etc.*

Future determination of λ_{hhh}

Higgs production cross-sections (here double Higgs production) depend on λ_{hhh}

Figure 10. Double Higgs production at hadron (left) [65] and lepton (right) [66] colliders as a function of the modified Higgs cubic self-coupling. See Table 18 for the SM rates. At lepton colliders, the production cross sections do depend on the polarisation but this dependence drops out in the ratios to the SM rates (beam spectrum and QED ISR effects have been included).

```
Plots taken from
[de Blas et al., 1905.03764]
```

DESY. | HPNP 2021 | Johannes Braathen (DESY) | March 26, 2021

Future determination of λ_{hhh}

Achieved accuracy actually depends on the value of λ_{hhh}

See also [Dürig, DESY-THESIS-2016-027]

MS to OS scheme conversion

• V_{eff} : we use expressions in MS scheme hence results for λ_{hhh} also in MS scheme

• We include finite counterterms to express the Higgs trilinear coupling in terms of physical quantities

$$\underbrace{m_X^2}_{\overline{\text{MS}}} = \underbrace{M_X^2}_{\text{pole}} - \Re \left[\prod_{XX}^{\text{fin.}} (p^2 = M_X^2) \right], \qquad v^2 = \underbrace{(\sqrt{2}G_F)^{-1}}_{\equiv v_{\text{OS}}^2} + \frac{3M_t^2}{16\pi^2} \left(2\log\frac{M_t^2}{Q^2} - 1 \right) + \cdots \\ \underbrace{m_X^2}_{\equiv v_{\text{OS}}^2} = \underbrace{M_X^2}_{\equiv v_{\text{OS}}^2} + \underbrace{M_X$$

• Also we include finite WFR effects \rightarrow OS scheme

$$\underbrace{\hat{\lambda}_{hhh}}_{\text{OS}} = \underbrace{\left(\frac{Z_h^{\text{OS}}}{Z_h^{\overline{\text{MS}}}}\right)^{3/2}}_{\text{finite WFR}} \underbrace{\lambda_{hhh}}_{\overline{\text{MS}}} = -\underbrace{\Gamma_{hhh}(0,0,0)}_{3\text{-pt. func.}}$$

Possible enhancements at two loops

Each model exhibits a *new parameter* only entering λ_{hhh} at two loops:

Aligned 2HDM: tanβ

[JB, Kanemura 1911.11507]

Classical scale invariance

· CSI: forbid mass-dimensionful parameters at classical (= tree) level

- \rightarrow tree-level potential: $V^{(0)} = \Lambda_{ijkl} \varphi_i \varphi_j \varphi_k \varphi_l$
- However broken **explicitly** at loop level

•

EW symmetry breaking: (c.f. [Coleman, Weinberg '73], [Gildener, Weinberg '76])

- > Must occur along a flat direction of $V^{(0)}$ (= Higgs/scalon direction)
- > EW sym. broken à la Coleman-Weinberg along flat direction
- > EW scale generated by dimensional transmutation

[JB, Kanemura, Shimoda '20]: CSI assumed around EW scale, for phenomenology

- > Higgs (scalon) automatically aligned at tree level \rightarrow compatible with current exp. results
- > BSM states can't be decoupled (no BSM mass term!)
- CSI scenarios: alignment with decoupling

One-loop effective potential and λ_{hhh} in CSI models

Only source of mass = coupling to Higgs and its VEV: $m_i^2(h) = m_i^2 \times \left(1 + \frac{h}{v}\right)^2$

Greatly simplifies the one-loop potential along Higgs (scalon) direction:

$$V^{(1)} = A(v+h)^4 + B(v+h)^4 \log \frac{(v+h)^2}{Q^2}$$
$$A \equiv \frac{1}{64\pi^2 v^4} \left\{ \operatorname{tr} \left[M_S^4 \left(\log \frac{M_S^2}{v^2} - \frac{3}{2} \right) \right] - 4\operatorname{tr} \left[M_f^4 \left(\log \frac{M_f^2}{v^2} - \frac{3}{2} \right) \right] + 3\operatorname{tr} \left[M_V^4 \left(\log \frac{M_V^2}{v^2} - \frac{5}{6} \right) \right] \right]$$
$$B \equiv \frac{1}{64\pi^2 v^4} \left(\operatorname{tr} \left[M_S^4 \right] - 4\operatorname{tr} \left[M_f^4 \right] + 3\operatorname{tr} \left[M_V^4 \right] \right)$$

 $04\pi^{-}0^{-}$

with

- Taking successive derivatives of the potential
- > 1st derivative = tadpole equation \rightarrow fix A in terms of v and B
- > 2nd derivative = Higgs (effective potential) mass $[M_h^2]_{V_{eff}} \rightarrow \text{fix B}$ in terms of v and Mh
- > 3rd derivative = λ_{hhh} but V⁽¹⁾ is **entirely determined** by A, B \rightarrow

$$\boxed{\lambda_{hhh} = \frac{5[M_h^2]_{V_{\text{eff}}}}{v} = \frac{5}{3}\lambda_{hhh}^{\text{SM,tree}}}{\text{Universal one-loop result in CSI theories!}}$$

Effective potential at two loops

• Form of V_{eff} changes at two loops:

• New type of contribution:

 $V_{\text{eff}} = A(v+h)^4 + B(v+h)^4 \log \frac{(v+h)^2}{O^2} + C(v+h)^4 \log^2 \frac{(v+h)^2}{O^2}$

$\lambda_{_{hhh}}$ at two loops in CSI models

- Follow same procedure as at one loop:
 - \rightarrow Eliminate A with tadpole eq., B with Higgs mass

→ Still, C remains!

• One finds:
$$\lambda_{hhh} = \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \Big|_{\min} = \frac{5[M_h^2]_{V_{\text{eff}}}}{v} + 32Cv$$

- → Deviation in $λ_{hhh}$ depends on log^2 term in V_{eff}
- Universality found at one loop is lost at two loops!

Theoretical and experimental constraints in [JB, Kanemura, Shimoda '20]

- Perturbative unitarity: we constrain parameters entering only at two loops
 - → tree-level perturbative unitarity suffices [Kanemura, Kubota, Takasugi '93]
- EW vacuum must be **true minimum of V**_{eff}, i.e. check that

$$\underbrace{V_{\text{eff}}(v+h=0)}_{=0} - V_{\text{eff}}(h=0) > 0 \quad \Rightarrow \quad V_{\text{eff}}(h=0) < 0$$

- M_h, generated at loop level, must be **125 GeV**
 - \rightarrow imposes a relation between SM parameters, M_H, M_A, M_H⁺, tan β , e.g. we can extract:

$$[M_h^2]_{V_{\text{eff}}} = \frac{\partial^2 V_{\text{eff}}}{\partial h^2} \Big|_{\text{min}} \quad \Rightarrow \quad \tan\beta = \tan\beta (\underbrace{M_h, M_t, \cdots}_{\text{measured SM values}}, \underbrace{M_H, M_A, M_{H^{\pm}}}_{\text{BSM inputs}})$$

• Limits from **collider searches** with HiggsBounds and HiggsSignals

No constraints

Unitarity and constraint from M_h in the CSI-2HDM

[JB, Kanemura, Shimoda '20]

