[arXiv:2012.14889]

Radiative corrections to charged Higgs bosons decays in NMSSM

Kodai Sakurai (KIT —> Tohoku U. (April))

Collaborators:

Thi Nhung Dao ^A, Margarete Mühlleitner ^B, Shruti Patel ^B (^A: ICISE, Vietnam; ^B: KIT, Germany)

Introduction

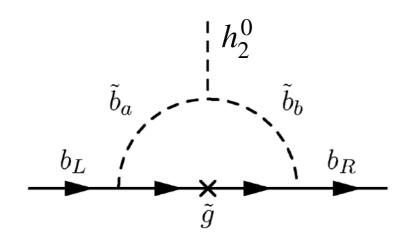
There are several unsolved problems in the SM.

Unsolved phenomena:

- Tiny neutrino masses
- Dark matter
- Baryon asymmetry of the Universe
- etc.

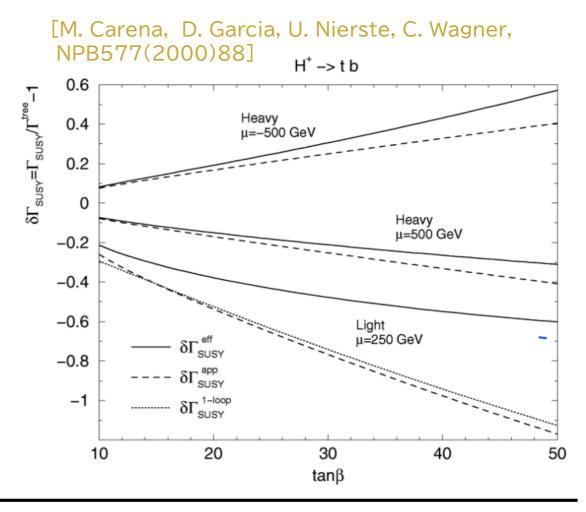
Theoretical problems:

- Hierarchy problem
- \leftrightarrow


This relates paradigm of BSM.

- Strong CP problem
- etc.

Symmetry solve the Hierarchy problem? → Supersymmetry (SUSY)


Indirect search of NP via precise calculations

- No direct evidence of new particles
- In future collider experiments (HL-LHC, ILC, FCC-ee, the CEPC, etc.), the discovered Higgs boson will be precisely measured.
- → It would be more important to focus on indirect searches of NP via precise measurement of Higgs bosons.
- → Precise calculations for various new physics models are necessary in oder to compare with precise measurement.
- Ex.) Δ_b corrections to $H^+ -> tb$ in MSSM

 $\bar{t}P_RbH^+: (y_b + \Delta y_b \tan \beta)$

 \rightarrow In case of $tan\beta >> 1$, Δ_b correction can be large.

Next-to Minimal supersymmetric model (NMSSM)

NMSSM is a simplest extension of the MSSM with a singlet field:

$$\mathcal{L}_{\text{NMSSM}} = \mathcal{L}_{\text{MSSM}} + S$$

- \rightarrow Physical Higgs states: H_1 , H_2 , H_3 , A_1 , A_2 , H^{\pm}
- There exist 5 neutralinos due to the new degree of freedom, singlino.
- μ problem can be solved in this model:

$$W_{ ext{MSSM}}
ightarrow \mu_{ ext{H}} = \lambda < S > \leftarrow \lambda S H_u H_d$$

Constraint of mass of the Higgs boson may be easily satisfied than MSSM:

$$MSSM: \left(m_{H_1}^{\text{tree}}\right)^2 = M_Z^2 \cos 2\beta$$

NMSSM:
$$(m_{H_1}^{\text{tree}})^2 = M_Z^2 \left(\cos 2\beta + \frac{\lambda^2}{g_1^2 + g_2^2} \sin 2\beta\right)$$

Precise calculations of Higgs bosons

Many studies of precise calculations of Higgs bosons have been performed in the NMSSM.

 Higgs boson masses 	(Full 1-loop)	[G. Degrassi, P. Slavich, NPB 825 (2010)] [F. Staub, W. Porod, B. Herrmann, JHEP10(2010)], etc
	($O(a_t a_S)$ 2-loop)	[M. Mühlleitner, D. T. Nhung, H. Rzehak, K. Walz, JHEP05(2015)] [M. D. Goodsell, K. Nickel, F. Staub, PRD91(2015)], etc
	(<i>O</i> (<i>a</i> ₁ ²) 2-loop)	[T.N. Dao, R. Gröber, M. Krause, M. Mühlleitner, H. Rzehak, JHEP08(2019)]
Higgs boson decays		
- $H_{i}, A_{i} \rightarrow ff$, VV	(Full 1-loop)	[F. Domingo, S. Heinemeyer, S. Paßehr, G. Weiglein, Eur.Phys.J.C78(2018)]
- $H_i \rightarrow H_j H_k$	(Full 1-loop)	[D. T. Nhung, M. Muhlleitner, J. Streicher, K. Walz, JHEP11 (2013)] [G. Belanger, V. Bizouard, F. Boudjema, G. Chalons, PRD96 (2017)]
	$(O(a_t a_S) \text{ 2-loop })$	[M. Mühlleitner, D. T. Nhung, H. Ziesche, JHEP 12 (2015)]
$- A_i \rightarrow \overline{\tilde{t}}\tilde{t}$	(Full 1-loop)	[J. Baglio, C. Krauss, M. Muhlleitner, K. Walz, JHEP 10 (2015)]
- All 2-body neutral Higgs decays, BRs		[J. Baglio, T. N. Dao, M. Mühlleitner, 1907.12060]
- H_i^{\pm} \rightarrow WH_i	(Full 1-loop)	[T. N. Dao, L. Fritz, M. Krause, M. Muehlleitner, S. Patel,

→ Missing part for Higgs boson decays is charged Higgs boson decays.

Eur.Phys.J. C80 (2020)]

This talk

- We calculated NLO corrections to various charged Higgs bosons in the NMSSM.
- We investigated the impact of the NLO corrections for each decay process.

Open questions:

- What is typical size of NLO corrections for each decay?
- How does CPV effects change the NLO corrections?

Decay rates for charged Higgs (Leading order)

$$H^+ \rightarrow tb$$
:

$$\lambda(x, y) = (1 - x - y)^2 - 4xy$$

$$\Gamma(H^+ \to tb) = \frac{3M_{H^\pm}}{8\pi} |V_{tb}|^2 \lambda^{1/2} \left(\frac{M_t^2}{M_{H^\pm}^2}, \frac{M_b^2}{M_{H^\pm}^2}\right) \left[\left(1 - \frac{M_t^2}{M_{H^\pm}^2} - \frac{M_b^2}{M_{H^\pm}^2}\right) \left(\frac{M_t^2}{v^2} \frac{1}{\tan^2 \beta} + \frac{M_b^2}{v^2} \tan^2 \beta\right) - 4 \frac{M_t^2 M_b^2}{M_{H^\pm}^2 v^2} \right]$$

 \rightarrow Depending on value of $tan\beta$, top Yukawa or bottom Yukawa can dominate.

$$H^+ \to \chi_i^0 \chi_i^+$$
: (CP conserving case) U, V, N : mixing matrix for electroweakinos

$$\Gamma(H^+ \to \chi_i^0 \chi_j^+) = \frac{M_{H^\pm}}{16\pi} \lambda^{1/2} \left(\frac{M_{\chi_i^+}^2}{M_{H^\pm}^2}, \frac{M_{\chi_j^0}^2}{M_{H^\pm}^2} \right) \left[\left(1 - \frac{M_{\chi_i^+}^2}{M_{H^\pm}^2} - \frac{M_{\chi_j^0}^2}{M_{H^\pm}^2} \right) \left(g_L^2 + g_R^2 \right) - 4 \frac{M_{\chi_i^+} M_{\chi_j^0}^2}{M_{H^\pm}^2} g_L g_R \right]$$

$$g_R = -c_\beta \left[\frac{g_1}{\sqrt{2}} N_{i1} V_{j2} + \frac{g_2}{\sqrt{2}} \left(N_{i2} V_{j2} + \sqrt{2} N_{i4} V_{j1} \right) + \lambda N_{i5} V_{j2} \tan \beta \right]$$

$$g_L: g_R [U \to V, N_{i4} \to -N_{i3}, \tan \beta - > -\cot \beta, c_\beta \to -s_\beta]$$

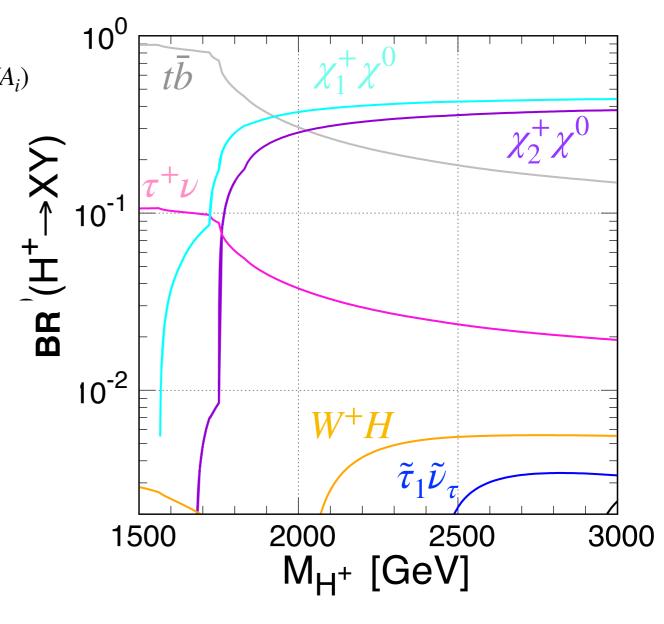
$$\rightarrow g_{L/R} \sim \lambda \ (x_i^0 \sim \tilde{S}), \ g_{L/R} \sim g_1 \text{ or } g_2 \ (x_i^0 \sim \tilde{B}, \ \tilde{W}^3, \ \tilde{H}_{u/d})$$

Branching ratios for charged Higgs (Leading order)

Charged Higgs boson decays with the state of the art QCD corrections by using NMSSMCALCEW (w/o EW corrections)

Definition of BRs

$$BR(H^{+} \to WH) = \sum_{i=1,\dots,3} BR(H^{+} \to WH_{i}) + \sum_{i=1,2} BR(H^{+} \to WA_{i})$$


$$BR(H^{+} \to \chi_{1/2}^{+} \chi^{0}) = \sum_{i=1,\dots,5} BR(H^{+} \to \chi_{1/2}^{+} \chi^{0})$$

• Inputs

$$\tan \beta = 10, \, \lambda = 0.09$$

Mass spectrum

$$m_{\chi_1^0} = 748 \text{ GeV}, \ m_{\chi_1^+} = 819 \text{ GeV}$$
 $m_{\tilde{t}_1} = m_{\tilde{b}_1} = 1.4 \text{ TeV}$
 $m_{\tilde{\nu}_{\tau}} = 1.2 \text{ TeV}, \ m_{\tilde{\tau}_1} = 1.1 \text{ TeV}$
 $m_{H_2} = 1.1 \text{ TeV}, \ m_{A_1} = 1.9 \text{ TeV}$

- $\to H^+ \to t\bar{b}$ is the main decay mode in $m_{H^+} \lesssim 2 \text{ TeV}$.
- $\to H^+ \to \chi_1^+ \chi^0$ dominates in $2 \text{ TeV} \lesssim m_{H^+}$.

Decay rates of charged Higgs bosons at NLO

• We evaluated NLO EW (+SUSY EW) and NLO SUSY QCD corrections to the following processes:

$$H^{+} \to tb, \quad H^{+} \to \tau \nu, \quad H^{\pm} \to \chi_{i}^{+} \chi_{j}^{0}, \quad H^{+} \to \tilde{t}\tilde{b}, \quad H^{+} \to \tilde{t}\tilde{\nu}, \quad H^{+} \to WH_{i}$$

Schematic formula for NLO decay rates

$$\Gamma(H^{\pm} \to X_1 X_2) = (\text{Resummed factors}) \times \Gamma_{\text{LO}}(H^{\pm} \to X_1 X_2)$$

$$\times \left[1 + \Delta_{\text{QCD}} + \Delta_{\text{SUSYQCD}} + \Delta_{(\text{SUSY+}) \text{ EW}} + \Delta_{\text{H}^+\text{H}^-}^{\text{ext.}} + \Delta_{\text{H}^+\text{G}^-/\text{W}^-}^{\text{ext.}} \right]$$

$$\stackrel{X_2}{\longleftarrow} + (\text{Real emissions})$$

(Resumed factors): Δ_b corrections (H+ \rightarrow tb), Z factor (H+ \rightarrow W H_i)

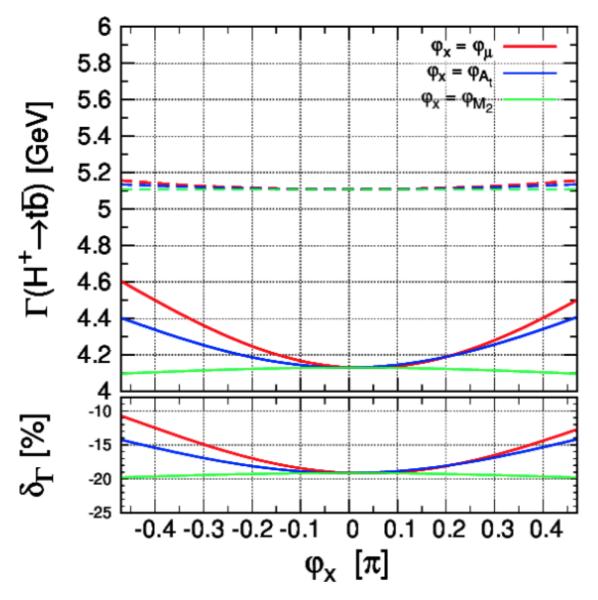
[M. Carena, D. Garcia, U. Nierste,C. E.M. Wagner, NPB 577(2000)], etc.

- Resumed factors, Δ_{QCD} are calculated by NMSSMCALC(EW)
- New ingredients are $\Delta_{\rm SUSYQCD} + \Delta_{\rm (SUSY+)~EW} + \Delta_{\rm H^+H^-}^{\rm ext.} + \Delta_{\rm H^+G^-/W^-}^{\rm ext.}$.

NLO corrections: $BR(H^+ \rightarrow tb)$, $BR(H^+ \rightarrow W^+B)$

$$\Delta_{\rm BR} = \frac{{\rm BR}^{\rm NLO} - {\rm BR}^{\rm LO}}{{\rm max}({\rm BR}^{\rm NLO}, {\rm BR}^{\rm LO})}, \quad \delta_{\Gamma} = \frac{\Gamma^{\rm NLO}}{\Gamma^{\rm LO}} - 1$$

[T. N. Dao, M. Mühlleitner, S. Patel, KS]



- For $H^+ ->tb$, maximum size of NLO corrections is ~ -30%.
- For $H^+ -> \widetilde{W}^+ \widetilde{B}$, large corrections, $|\Delta_{BR}| \sim 100\%$, can appear.
 - → The main contributions is wave function renormalizations for electroweakinos.

Effect of CP violation

Ex.) $H^+ \rightarrow tb$

[T. N. Dao, M. Mühlleitner, S. Patel, KS]

- Phase of $\mu_{\rm eff}, A_t, M_2$ is varied.
- ullet At LO, slight phase dependence appear for $\mu_{
 m eff}, A_t$.
- At NLO, decay rates charges match compared with those of LO.

Summary

- The Higgs boson will be precisely measured at the future collider experiments, such as the HL-LHC, the ILC, FCC-ee and the CEPC.
 - → This means that the theoretical predictions should be accurately evaluated.
- We study NLO (SUSY +)EW and SUSY QCD corrections for various charged Higgs bosons decays in the complex NMSSM.
 - $H^+ \rightarrow tb$: NLO corrections with ~30% can obtained.
 - $H^+ o \tilde{W}^+ \tilde{B}$: large corrections due to mixing of electroweakinos can be found in BR<1%.
 - CPV effect : NLO corrections can deviate from those of CP conserving case within ~10%.