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MACHINE LEARNING

* ML is the tool used for large-scale data processing and is
well suited for complex datasets with huge numbers of
variables and features (patterns and regularities),
especially for deep learning neural networks (NNs).

- The Universal Theorem: any function can be approximated
by a neural network with at least one hidden layer.

* For a long time, given this theorem and the difficulty in
complex networks, people have restricted themselves to
shallow networks with only one hidden layer.

- Recently, people have realized that deeper, more complex
networks with many hidden layers can “understand” higher
levels of abstraction than shallow layers.
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ResUurRgENCE OF NN

* NNs became popular and then forgotten for a while.
* They have resurged in the last decade partly due to:

- faster computers, with the use of GPUs versus the
traditional use of CPUs,

* better, deeper algorithms and NN designs, and
* increasingly large datasets.
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COMMON NN TYPES

- Dense neutral network (DNN): a network with standard
fully-connected feed-forward layers that take
as the input, prototypical for most tasks;
sometimes also called multi-layer perceptron (MLP).

- Convolutional neural network (CNN)*: a network with
special layers that filter data, suitable for computer vision.
w ideal for jet image recognition task in collider physics

- Recurrent neural network (RNN): a network that deals with
sequences of variable length by defining a
over these sequences, suitable for natural
language processing and speech recognition tasks.

*Some evidence shows that neurons in CNNs are organized in a way

similar to biological cells in the visual cortex of the human brain.
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BOOSTED W/Z BOSON
TAGGERS



MOTIVATIONS

» Weak boson scatterings at high energy provide a direct
probe of the EWSB mechanism.

* New physics particles, such as Z', W’,or heavy Higgs,
often decay to weak bosons.

» Such weak bosons are generally highly boosted and,

when decaying hadronically, form one collimated jet.
low momentum high momentum

q
W)z
| boost> W/z

q

two resolvable jets one boosted fat jet



MOTIVATIONS

» A lot of effort has been devoted to the important problem
of tagging boosted resonances (i.e., identification or
classification) through the understanding of jet

substructure (hOW energy IS Marzani, Soyez, and Spannowsky 2019
C Cyy : Asquith et al. 2019
distributed within the Jet) Larkoski, Moult, and Nachman 2020

- Besides usual QCD jets (lighter quarks and gluons), the
LHC produces new classes of jets with collimated prongs,
derived from boosted W, Z, t-quark, or Higgs boson.

* Recently, there is enormous interest in the application of
modern deep learning techniques to boosted resonance
tagging because they can automate the process of feature
engineering from high-dimensional, low-level inputs (e.g.,

jet ConStituentS). de Oliveira et al 2016
L arkoski, Moult, Nachman 2017/



OUR TAGGERS AND
THEIR PERFORMANCES




SAMPLE PREPARATION

« Jet selection:

- Simulations:
e - , mu = 800 GeV
parton-love processes e B G
. ' Jet sample jets with anti-k7 and R = 0.7
% V-V merging : AR(V1,V3) < 0.6
V-jet matching : AR(V,j) < 0.1

showering and hadronization”

my PYTHTA 8.2.19

% - Sample sizes:
ﬂe];tEengEOSr 3SIl[n luw!v?tlcgg card Jet sample size
- , . Training set  Validation set Testing set
$ W+ 169.2k 18.8k 38k
o ' ” W= 178.2k 19.8k 40k
jet reconstruction Z 157.5k 17.5k 35k
m FastJdet 3.1.3
| 90% / 10%
*A dataset based on HERWIG showering mm—
and hadronization Is ;Iso genera}teq. for This is how theorists generate
the purpose of checking the reliability of large datasets for ML analyses.

our jet-tagging results.




HgHer-LEVEL INPUTS

- Traditional analyses make use of higher-level observables:

Jet invariant mass Jet charge
2 2 ok
oo(5e) (5e) erme(
icJ icJ icJ PT.J

where J denotes a jet, i runs over jet constituents (tracks)
with p, > 500 MeV, ¢; is the integer charge of constituent i
In units of proton charge, and k is a free parameter.

- Q. is computed in this p,~weighted scheme in the hope of
minimizing mis-measurements from low-p,. particles.



HgHer-LEVEL INPUTS

- Traditional analyses make use of higher-level observables:
Jet invariant mass

v (£m) (S0

SO0 MR =WV, m_ =800 GeV
) H;
O] ‘'R=0.7
- The broader widths in the %% my,-
mass distribution originate = ‘m,

from a combination of
showering, hadronization,
jet clustering and detector

Fraction /
o
o
N

effects. 0.01f

w NO clear boundary ol

w ynable to distinguish 60 70 80 90 100 110 120
W/ W- Mass [GeV]
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HgHer-LEVEL INPUTS

- Traditional analyses make use of higher-level observables:

Jet charge
i K pr-weighted scheme: Field, Feynman 1978
_ Pt K = O m» equal-weight
Ql-{, — q; X 9 , &
icJ pr,J K= | m proportional to pr
jet charge (x = 0.2) jet charge (x = 0.3) jet charge (x = 0.6)
S0035F H, - VV, m, =800 GeV =3 f H, — VV, m =800 GeV =3 f H, — VV, m =800 GeV
S 003f R=07, 350<p < 450 GeV 9;0-04 R=0.7, 350<p < 450 GeV s *7FRr=07, 350<p < 450 GeV
= W W Z S fwowz ;ooa—wwz
. S 0.03f
g
L

0.02f

0.01f

0
-2 -15 -1 -05 0 05 1 15 2
QK QK QK

» The separation is not well and depends on the choices of
weight factor K, jet cone size R, etc.

|4
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REFERENCE TAGGERS

- For the ternary (W+/W-/Z) classification task, the reference
taggers can be visualized as follows:

cut-based tagger single-k BDT (k=0.3)

60 '.-.. .-:. i.li';:
-15 -1 -05 0 0.5

Q
Y-shaped cuts

rectangular cuts
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JET IMAGES AND CHANNELS

* Deep learning taggers studied in our work are based on jet
iImages, utilizing lower-level inputs and processed by
CNNSs.

- Jet images are made from jets reconstructed in a box of
An = Ap = 1.6 (central region) with 75 x 75 pixels.
m a resolution consistent with that of the CMS ECal

- The input variables or channels are Q, and p, per pixel.

w now the sum Z is done within each pixel

et



Lower-LeEeVvEL INPUTS

* Preprocess each image, involving centralization, rotation
and flipping (m jet with larger p,is on +#’ axis).

- pr channel:
Jet Image (Avg)
W+
0.5
= 0.0]
—0.5]
-0.5 0.0 05

¢l

0 new coordinates
after preprocessing

colored bars in
arbitrary units

Jet Image (Avq)

0.51

10-3 '
—0.5
10—4 /

Z-W+*

-0.5

0.0

> ¢’

0.5

1072

1073

- W- average jet image is basically identical to that of W+.

- Z average jet image has a wider distribution in AR than W
jets, as expected from its larger invariant mass.

I/



and flipping (m jet with larger p,is on +#’ axis).

Lower-LeEeVvEL INPUTS

* Preprocess each image, involving centralization, rotation

- Q. channel:

Jet Image (AvqQ)

0.51

—0.5]

W+
L |
-0.5 0.0 0.5
¢/

Jet Image (AvqQ)

W-
]
-0.5 0.0 0.5
¢/

colored bars in
arbitrary units

e —

Jet Image (AvqQ)

-2
05 Z | Ko
103
0.0 0
—10-3
_0.5‘ _10—2
-0.5 0.0 0.5

¢/

* The average Z jet charge image is close to zero as the
constituent charges in different events tend to cancel out.



OUrR CNN TAGgGERS

- a deeper Qk network tends to overfit WH/W-

two architectures - a deeper pt network helps identifying /Z

Input Image (75 x 75) pixels within (|| < 0.8, |¢| < 0.8)
Neural Network CNN v CNN? v

Channels pr, ng pbr Qk;

Architecture BN-32C6-MP2-128C4- BN-32C3-32C3-MP2- BN-32C3-32C3-MP2-
MP2-256C6-MP2-512N- 64C3-MP2-64C3-MP2- 64C4-64C4-MP2-256C6-
512N 64C3-64C3-128C5-256C5- MP2-256N
256N-256IN
Settings Relu Activation, Padding=same, Dropout = 0.5, 12 Regularizer = 0.01
. : . : S A

Preprocessing ntralization, Ro*atzon, Flipping

Training Adam Optimiger, Minibatchsilze=512, Cross entropy loss

activated to enable  set to prevent overfitting
a deeper network

using Keras library with Tensortlow backend

19



W=/ WT CLASSIFICATION
 Only the Qx distribution is useful.

performance as a function of K

Area Under ROC Curve Accuracy Background Rejection

; — — cut-based| 0.95 ; — — cut-based 30 ; — — cut-based
L.00} i) — CNN CNN

| — CNN? 090 | — CNN2 25|
0,95 i S

0.85 | | I

0.90; - o R o * 20
0.85! | 1 ‘ ‘ 0.80 15|

075L . T
O'88.1 0.2 0.3 0.4 0.5 0.6 0.1 0. 18.1 0.2 0.3 0.4 0.5 0.6

2y K K

- Qualitatively different k dependence for cut-based taggers,
while similar between CNNSs.

* CNN is slightly better than CNNz=.

* CNNs have a smaller optimal K.
w K = (0.3 for the single-k BDT taggers, and
K = 0.15 for our CNN taggers



W=/ WT CLASSIFICATION

» Performance metrics for all taggers,

except for the single-k BDT, which is

the same as the cut-based one.
Area under ROC curve

R50 AUC ACC

cut-based 16.1372 0.8600 0.7811
multi-x BDT | 16.0960 0.8615 0.7820
CNN 21.9559 0.8855 0.8042
CNN?Z 20.5057 0.8800 0. 8000

T

background rejection rate
at a 50% signal efficiency
working point, (1/&p)|es=50%.

30-40% (36% for R50)
improvement in

bkend rejection rate

best accuracy E 7
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n
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Z,/ Wt CLASSIFICATION

R50 AUC ACC
cut-based 9.9590 0.8118 0.7705 With or without Q:
single-x BDT | 14.1638  0.8608 0.7875 In a wide range of working points,
multi-x BDT | 14.2383  0.8611 0.7880 our CNN taggers enjoy a ~30%
CNN 40.4205  0.9091 0.8345 gain In the background rejection
CNN?2 52.6028  0.9206 0.8452 rate by incorporating Q.
ROC curve SIC curve l
single-x BDT (M, Q) single-x BDT (M, Q)
cut-based (M) T cut-based (M)
""" CNN (pr, Q) 6 — CNN (pr, Q)
~ CNN (pr) - CNN (pr)
— CNN? (pr; Q) )
- CNN? (pr)

w
T

1 (cz//a)

10°} R50 improved by a .
factor of ~ 2.85 from CNN?2 outperforms CNN
S 0.4 BDT to CNN I %0 02 04 06 08 Io
€z €z
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Wt/ W~—/Z CLASSIFICATION

- We compare the performance of the ternary taggers
according to two metrics:
(a) their overall accuracy
number of correct predictions

total number of instances
and

(b) a “one-against-all” metric
one class as “signal” «=* all the rest as “background”

23



W- OrR Z VERSUS THE REST

SIC curve SIC curve
4.0 ‘ — c.ut-based — c.ut-based
W- as signal el Z as signal —~ el
530 — o T | B — e
ROC curve E” - ROC curve |& ,,/“'ﬁ\
10° — cutd \2.0~ 5"“‘%\ 10° — o // \
4 smgl; él.S f;;{’;——'—::k\\\ | 4 si \Nz’ \. |
K o E’V | \\ my: ;”f/// N\
: =\ N\
E 10° \‘ 090 0z 04 Jos 08 Lo Lo \ i\ %.0/0.2 04 d6 08 1.0
§101 \\\; ‘o Eml\ 5\ ¢z
\\\ smaller improvement i \\\\ bigger improvement
i from CNN to CNN?2 i 1 from CNN to CNNZ2
0.0 0.2 0.46Wi).6 0.8 1.0 0.0 0.2 0.4 GZO.G 0.8 1.0
overall signal: W™ signal: Z
ACC R50 AUC ACC R50 AUC ACC
cut-based 0.6581 8.0262 0.7893 0.7643 | 10.0882 0.8233 0.7839
single-x BDT | 0.6667 | 12.5230 0.8339 0.7576 | 11.0726 0.8363 0.7725
multi-x BDT | 0.6675 | 12.7115 0.8348 0.7579 | 11.0678 0.8366 0.7726
CNN 0.7197 | 17.3403 0.8715 0.7890 | 32.8981 0.8936 0.8170
CNN? 0.7318 | 19.0907 0.8764 0.7950 | 42.1927 0.9088 0.8334
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PHASE TRANSITION IN DL

A “phase transition” in the CNN architecture for W=
samples around 25th epoch during training, but not CNNZ2.

- The CNN tends to first learn characteristics of the Z
sample, and then those of the W sample later.

- |t is possible that the CNNZ2 learns so fast that the
performance in all classes saturates within one epoch.

1.0

1.0

early stop early stop

— W — W

— W — W

0.9; —Z 0.9; — Z
(@] -/-\/\——\,V\/\—\M’\ @) -\/\-——v\_\r\_\’\_\/\/\

0.7J 0.7
CNN CNN2
0.6 . . . . 0.6 . . . .
0 25 50 75 100 0 25 50 75 100

Epochs learning curves Epochs
25



SEARCHES FOR
CHARGED BOSONS




MOTIVATIONS

- Since the discovery of W boson through the ev decay
channel in 1983, searches for W’ and other charged
bosonic resonances have continued.

» At LHC, the light leptonic channels are more favorable.
m hope to use these decay modes to determine mass,
width, spin, and couplings to SM fermions

WIW'|H*

27



AMBIGUITIES AT LHC

- Unknown initial state: To study the Lorentz structure of a
charged-current interaction by examining the angular
distribution of #*, we need to define a forward direction,
e.g., in the ¢ (not g) direction. However, LHC is a
symmetric machine.

 Missing longitudinal momentum: Since the colliding
partons typically have a boosted c.m. frame, we need to
identify the missing longitudinal momentum of the neutrino
to correctly determine the distribution in cos 6. From
kKinematics, the longitudinal momentum can be solved
from a quadratic equation assuming an on-shell mediating
boson, but there is no event-by-event information to
determine which of the two quadratic solutions is correct.

28



CLASSES OF INTERACTIONS

- Vector/axial (VA): This class corresponds to a W’ with
Wwy* y or W ytysy fermionic couplings.

 Chiral (CH): This class corresponds to a W’ with
Wpr* (1 —ys) x or Wapy* (1 + y5) x fermionic couplings.

- Scalar (SC): This class corresponds to an H* with Hyy or
Hyysy Yukawa couplings.

- For a symmetric machine like LHC, we still cannot
distinguish interactions with and without y;.”

*Interference between a W’ and the SM W could in principle break this
degeneracy, yet such effects are found to be negligible for the TeV-

mass bosons considered in this study.



OUR GOAL

» We explore deep-learning-based approaches to tackle the
problem of determining the spin and interaction type of a
heavy charged boson through its leptonic decay channels.

» The above-mentioned ambiguities make event-by-event
reconstruction by a NN also challenging, but classification
based on a collection of events can still have significant
distinguishing power.

- Two ways to input this collection of events:

(a) simply feed them into the NN event by event as an
array, or

(b) combine a number of events and form a 2D histogram
of a selected pair of variables as the input.

30



OUur NN MobpeLs

- Consider three NN models in this analysis:

- FNNi: trained upon the kinematic information of individual
events — a fully connected neural network.

* FNNh: trained upon flattened 2D histograms made from
pairs of kinematic observables of a number of events.

- CNN: trained upon the 2D histograms mentioned above.
- Prepared ~ 0.3M samples for each NP classes and SM.

» Will compare their performance in classifying different
types of charged bosons and interactions.

3



OUR TAGGERS AND
THEIR PERFORMANCES




ASSUMED ENVIRONMENT

. Assume 14-TeV HL-LHC, with L = 3 ab™!.

- Beyond the signal-only hypothesis testing, also include the
SMW baCkground. Khosa, Sanz, Soughton 2019

» Investigate scenarios of different S/B ratios.

- Study only the ev channel, though the method can also be
applied to uv and improve the NN efficiency.

- Assume that the coupling strength and structure are
universal to all generations in both quark and lepton
sectors (even for H*).

- To satisfy current bounds and to expect a 5¢ discovery in
the HL-LHC era, the boson mass has to be > 4.5 TeV.
w Will focus on 4.5 TeV (also explore 6 TeV)

33



O-)ET SAMPLES - b

» Assume M = 4.5 TeV, I'yp ~ 200 GeV.

- Within selected phase space, expected
number of SM 0-jet events is
BO — OB, X L~ 84
. (a) ps distribution; (b) ¢ distribution;
(c) averaged image in 7°-p% plane.

dN/N
g

- VA and CH are basically identical in p7, but @
very different in n°. ” "
w their difference in ps. in bottom plot is
due to the 7 cut and normalization.

5.0e-03

4.0e-03

3.0e-03

[GeV]

ok

p

2.0e-03

1.0e-03

0.0e+00

(e)
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1-)JeT SAMPLES

- Within selected phase space, expected number of SM 1-
jet events (including contributions from O-jet samples) is
Bl — 0B, X L ~ 58
. More kinematic variables: p¢, n°, pl, 1/, Ad,;, Er, A¢, B
and A¢,p _, Where last three being derived observables.

- Form “RGB” histograms by picking three pairs of them,
according to physical relationship, principal component
analysis, etc

;;;;;;;

AN/N
o
dN/N
=

dAN/N
o

50 2150 2550 T ) 0 2 4 T30 120
Py [GeV] '’ 1 [GeV] 7
(@) (b) © (d)
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OUR

TABLE III.  Zero-jet and one-jef FNNi |structure specifications.
Zero jet One jet
Input ps. N, P° PN, P]f, n
ET’ A(ﬁej’ A('beﬂlT’ Ad)jﬂlT
Layers batch normalization layer

dense layer: 256"
dense layer: 256

Layer settings hidden layer activation = relu

output layer activation = softmax

Compilation loss = categorical_crossentropy
optimizer = adam [47]

metric = accuracy

“This means that there are 256 nodes in the dense layer.

TABLE IV. Zero-jet and one-jet|fFNNh|structure specifications.

Zero jet One jet
Input Flattened 60 x 60 images

pr vs n°  pg Vs 0%, pr Vs Er, pr vs Ad,;
Layers batch normalization layer

dense layer: 1024
dense layer: 256

Layer settings hidden layer activation = relu

output layer activation = softmax

Compilation loss = categorical_crossentropy
optimizer = adam

metric = accuracy

NNs

TABLE V. Zero-jet and one-jetl CNN |structure specifications.

Zero jet One jet
Input 60 x 60 images
ps Vs n° RGB colors: p% vs 5,
p7 Vs Er, pg Vs Ag,;
Layers batch normalization layer

convolutional 2D layer: 3-32"
max pooling 2D layer: 2-2°
convolutional 2D layer: 3-32
max pooling 2D layer: 2-2
flatten layer
dense layer: 128
dense layer: 64

Layer settings hidden layer activation = relu

output layer activation = softmax

loss = categorical_crossentropy
optimizer = adam
metric = accuracy

Compilation

*This means that the filter kernel dimension is 3 x 3, and that
there are 32 nodes in the convolutional layer.

®This means that the max pooling kernel dimension is 2 x 2,
and that each stride is 2 pixels.
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4.5 TeV

O-)ET RESULT T

- AUC as a function of S/B for 0-jet ow g
samples.

. Grey: not reach 50 even for HL-LHC;
Red: excluded by current ATLAS data.

* FNNh is slightly better than CNN,
while FNNI is further worse.

 For all three NN models, CH has best

performance, VA s slightly better than
SC.

- Performance generally improves with
S/B.

AUC

AUC
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O-JET RESULT

- ACC (classwise true positive rate) as a function of S/B for
O-jet samples in FNNh.

- Compared to AUC which is evaluated using a sliding
threshold, the ACC is more sensitive to model biases.

- Cross validation (CV) helps to stabilize the classwise
accuracies and does not significantly alter the average
ACC (global true positive rate).

w/o CV with CV

0 HL-LHC =50

0 HL-LHC =50

ACC
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4.5 TeV

1-)ET RESULT Il

0.8
O

* FNNh significantly outperforms CNN o =,
and FNNI.
* FNNh for 1-jet is better than for 0-jet,
while CNN and FNNi have the opposite
behavior.

FNNh

AUC

0.8
S/B
©

FNNi

AUC

0.8
S/B
( (e) A N
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1-)ET RESULT

 Again, cross validation helps stabilizing the FNNh.

w/o CV with CV

Current ATLAS Current ATLAS

HL-LHC =50 Constraint HL-LHC =50 Constraint

S8
(b)

Current ATLAS
HL-LHC =50 Constraint

« AUC of FNNh after 10-fold CV:

AUC

siB
@ ~ oy
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SUMMARY

- We show the power of modern machine learning techniques in
collider physics by way of examples.

» We have built better taggers for
(a) boosted W/Z bosons through their hadronic decays, and
(b) the Drell-Yan processes through new charged bosons.

 For (a), CNN-based NN outperforms traditional cut-based or BDT

analyses, and the charge channel is crucial in distinguishing W+
and W~

- For (b), FNN-based NN on 2D histograms outperforms CNN.
From 1-jet analysis, we see the power of NN for analyses with
higher-dimensional kinematic variables.

- Modern machine learning is seen to have great potential in
improving our abilities and efficiencies in analyzing data.
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EXISTING JET CLASSIFIERS
- Jet flavor (light or heavy origin) tagging Guest et al 2016

: Pearkes, Fedorko, Lister; Gay 2017
* TOP tagglng Egan, Fedorko, Lister; Pearkes, Gay 2017/
Kasieczka, Plehn, Russell, Schell 2017/
Butter, Kasieczka, Plehn, Russell 2018
Macaluso, Shih 2018
Butter et al 2019

_ Komiske, Metodiev, Schwartz 2017/
° Quark/gluon tagglng Butter, Kasieczka, Plehn, Russell 2018

Macaluso, Shih 2018
Fraser, Schwartz 2018

N -1 ' _i Larkoski, Salam, Thaler 2013
Boosted Z-jet tagging (from QCD-jets) = = 2 0 (oih0e

- Boosted W-jet tagging (from QCD-jets) Cui, Han, Schwartz 201 |
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