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• Two different classes 

• Electroweak phase transition 
might have detectable remnants 

• Two opposing problems: gauge 
dependence and breakdown of 
the loop expansion

Phase transitions Senaha (DOI: 10.3390/sym12050733)Symmetry 2020, 12, 733 4 of 24

Figure 1. Two types of phase transitions. (Upper) Case of the first-order phase transition; shapes of
the effective potential at T > TC, T = TC and T < TC [left panel] and the temperature evolution of the
VEV of scalar [right panel]. (Lower) Counterparts in the case of the second-order phase transition.

Before we discuss EWPT, we consider the f4 theory in order to see the symmetry behavior at
high-T. The Lagrangian is given by
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1
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where l > 0 and m2
> 0. This model has the Z2 symmetry, j ! �j, but it is spontaneously

broken because of the �m2 term. The field-dependent scalar mass is derived by m̄2 = ∂2V0/∂j2 =
�m2 + lj2/2. The one-loop effective potential in the MS scheme takes the form
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where µ̄2 = 4pe�gE µ2 with gE being the Euler constant. Combining this with V0(j), one finds

Veff(j; T) = V0(j) + V1(j; T)
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where cB = ln aB/2 and HTE is used in the second line. One can find that the Z2 symmetry can be
restored at high temperature due to the positive contribution of the O(T2) term. Presence of the (m̄2)3/2



Gauge dependence

• The effective potential is gauge dependent 

• Resolution: use the ħ-expansion 

• Be pedantic about loop counting!
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2.2.2 The !-expansion

Though the Nielsen identity [8] guarantees that the physical quantity Vmin is gauge invari-

ant, care must be taken when Vmin is calculated in perturbation theory. The issue is that

the Nielsen identity is a non-perturbative statement, but in perturbation theory things are

more subtle.

A consistent !-expansion is necessary in order to establish this gauge invariance. This

!-expansion has recently been discussed by Patel and Ramsey-Musolf in [2], but see also [9]

and [10] for earlier applications. The key point is in how the minimum φm is treated. The

minimum is found by solving the equation

∂V |φ=φm = 0. (2.2)

Because the potential V is calculated perturbatively, equation (2.2) should also be solved

perturbatively, order by order in !. This gives φm = φm
0 + !φm

1 + !2φm
2 + . . ., where the

contributions φm
1 ,φ

m
2 , . . ., are found by inserting this expansion in equation (2.2),

∂V0|φm
0
= 0,

∂V1|φm
0
+ φm

1 ∂2V0

∣∣
φm
0
= 0 =⇒ φm

1 = − ∂V1

∂2V0

∣∣∣∣
φm
0

.

...

When φm is evaluated perturbatively, Vmin can be consistently calculated order by order in

perturbation theory. The first few terms of Vmin are

V (φm) = V0|φm
0
+ ! V1|φm

0
+ !2

(
V2 −

1

2
(φm

1 )
2 ∂2V0

)∣∣∣∣
φm
0

+ . . .

It has been shown that V (φm) evaluated in this way is gauge invariant order by order

in ! [2]. In the Fermi gauges it can be shown that φm
1 and higher order contributions

have ir divergences of the form ξ log [G] and worse [6]. However, these divergences are

not a problem because the vev φm is not a physical quantity. Furthermore, the divergence

of φm ensures that the effective potential is finite. All gauge dependent divergences are

guaranteed to cancel order by order in !.
As an aside we would like to comment on the term “!-expansion”, of which there are

contradictory uses. It has historically been thought that when the units are changed from

natural units, and explicit factors of ! are reinserted, that these factors of ! act as loop

counting parameters. This is not true. As was emphasized in [11] it is possible to have

loop effects at the order !0. That is, it is possible to calculate classical corrections by

doing loops. The main message is that this kind of !-expansion is not a loop-expansion.

In this paper we do not reintroduce factors of ! by changing units. Instead, we use !
as the name of the loop-counting parameter — the perturbative expansion is then called

the “!-expansion”. As far as we can tell, this nomenclature was introduced in [2]. It is

unfortunate that both of these kinds of expansions are known as !-expansions.
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Resummation

• The perturbative expansion breaks down 

• Cannot order by loops anymore: a resummation must be made 

• Then what about gauge invariance?
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In order to clarify the nature of the perturbative expansion we are using, we ask the

reader to consider the one-loop correction to the Higgs mass

m2
H = m2

tree + ! Π1(m
2
H),

where mtree is the tree level Higgs mass and Π1(p2) is the one-loop self energy. To find

the one-loop correction to the Higgs mass we should expand m2
H = m2

tree + ! m2
1 + . . .,

and would find m2
1 = Π1(m2

tree). This is the same perturbative matching that we will use

throughout this paper when discussing the effective potential.

2.2.3 IR divergences in the effective potential

The effective potential evaluated at φ0 has ir divergences when calculated perturbatively

(because the Goldstone bosons are massless). These ir divergences point to a problem with

the perturbative expansion, suggesting that it might be necessary to perform a resumma-

tion. To illustrate the idea, consider Landau gauge — where the mixed G-Aµ propagator

vanishes, and the Goldstone propagator is DG(k) = i/(k2 −G). The most severe diver-

gences are given by daisy diagrams [3, 4],
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ΠΠ Π ,
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6
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Π

Π

Π , . . .

The daisies are built from Goldstone propagators and insertions of the Goldstone self-

energy Π(k2). These diagrams, for a given loop order L, contain the worst divergences in

the limit G → 0 because they have the maximum number of Goldstone propagators within

the same loop. The value of a daisy diagram with n “petals” can be written

1

2n

∫
(dk)

(
1

k2 −G

)n

(−Π(k2))n,

where we introduced a shorthand notation for the integration,
∫
(dq) = Q2ε

∫
ddq/ (2π)d,

with Q the renormalization scale, and d = 4 − 2ε. ir divergences come from the limit

G → 0. The daisy integrand, for soft momenta k2 ∼ G, scales as ∼ G2 (Π(0)/G)n. The

daisy diagrams are ir divergent for n ≥ 2, which corresponds to 3 loops and higher. In

this argument we used Π(0) instead of Π(k2), because for soft momenta the momentum

dependence of Π(k2) simply corresponds to sub-divergences,

Π(k2) ∼ Π(0) +GΠ
′
(0) + . . .

Because ir divergences come from momenta of the order k2 ∼ G it’s useful to separate

different contributions as hard and soft [4, 7]. Fields with momentum that scale as k2 ∼ G

are soft; fields with momentum that scale as k2 % G are hard. It is then possible to

separate the effective potential into a hard and a soft part, V (φ) = V h(φ) + V s(φ), where

V h only contains contributions from hard fields, and V s from soft and hard. We refer to

this separation as the hard/soft split. From G = 1
φ∂V (φ) the Goldstone self-energy can be

separated into a hard part ∆ and a soft part Σ, Π(0) = ∆+Σ, with ∆ = 1
φ∂V

h, Σ = 1
φ∂V

s.
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pinosa [41], and our work in paper IV. It is an attempt to extend the gauge-invariant
methods of [16], using the logic laid out at the end of subsection 3.3.4.

Starting with the 1-loop diagram of the effective potential, we can consider a
class of higher-loop diagrams that arise from inserting loops on the propagator.
The most important contributions occur when the inner loop has soft momentum
k2! T 2, and the outer loops have hard momenta k2 ∼ T 2. An n-loop diagram dn

with (n− 1) insertions will then scale with the temperature as

dn ∼ T
!
e2T 2
"n−1

=⇒ dn

dn−1
∼ e2T 2, (4.9)

which means that sufficiently large temperatures will break the perturbative expan-
sion. When T ∼ 1/e, the (n− 1)-loop diagrams become as important as the n-loop
diagrams.

This breakdown of perturbation theory signals that we are not treating our
physics correctly. In this particular case, we can fix the problem by resumming
all the problematic diagrams into one single contribution. In this contribution, the
mass of the inner loop particle then gets shifted by ∼ e2T 2. The particle is screened
by the thermal bath, and gets an effective mass [37].

Second order transitions
Returning to phase transitions, let’s consider the leading contribution again. We
can focus on the simple example of Abelian Higgs. Then the leading terms in the
effective potential are schematically

V (φ)∼ 1
2
(m2 + (e2 +λ)T 2)φ2 +

1
4
λφ4, (4.10)

where the T 2 term arises from the 1-loop effective potential.
If these terms are a good approximation for the potential, then there is a second

order phase transition with a critical temperature Tc ∼ 1/e. This is precisely the
scale where perturbation theory breaks down, as seen in equation (4.9). Maybe it is
not actually surprising. For the temperature fluctuations to affect the phase structure
of the theory, we need 1-loop effects to be as large as tree-level effects. This means
that we cannot use loops to order perturbation theory, just as for the Coleman-
Weinberg mechanism explained in subsection 3.3.4. To reorder perturbation theory
then requires a resummation, with the end result that Vmin(T ) is finite and gauge
invariant near the phase transition. This enables us to study the phase transition in
a consistent way.

First order transitions
There has to be a barrier in the potential for a first-order transition to occur. Op-
erationally, with a positive quartic coupling we need a cubic term in the potential.

48
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Loop-induced symmetry breaking
T = 0 : Coleman-Weinberg model

• Regular loop counting: 𝛌 ~ e2 

• Radiative symmetry breaking: 𝛌 ~ e4
S. Coleman and E. Weinberg (DOI:10.1103/PhysRevD.7.1888) 

Andreassen, Frost, and Schwartz (1408.0287)

where

F (x) =
x2

� 4x
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(6.14)

These terms are important, but since � ⇠ e4, they have e↵ects comparable to terms in the 3-
loop Coleman-Weinberg potential. Thus, an advantage of Landau gauge is that it postpones
the relevance of daisy resummation by one loop. Landau gauge does not however let us
ignore the daisy graphs completely.

Two recent papers also observed that resummation of certain graphs to all orders is
necessary starting at 3 loops in Landau gauge [40,41]. These two papers are concerned with
resolving an infrared divergence problem associated with massless Goldstone bosons starting
at 3 loops. While these two papers discuss diagrams similar to the ones here, the problem
they solve is di↵erent (infrared divergences, not gauge-dependence) and their results are not
directly transferable. However, these two papers, along with the earlier work in [35, 43], do
explain in a more systematic way how daisy and other relevant diagrams can be resummed
through a modification of the e↵ective propagators.

In summary, the full Coleman-Weinberg potential up to order e6 with � ⇠ e4 is the sum
of Eqs. (4.1), (4.3), (5.20) and (6.10). It is helpful to write the result as

V = V LO + V NLO + · · · (6.15)

where the leading-order (LO) potential
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scales as O(~) when � ⇠ ~e4 and the next-to-leading order (NLO) potential, scaling like
O(~2), is
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with b�(�) is defined in Eq. (6.11). Note that there are tree and 1-loop contributions to the
LO potential and that the NLO potential get contributions from 1-, 2- and all higher order
loops.
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• The new power counting “forces” a resummation. 

• Perturbative expansions ordered according to a consistent 
counting are gauge invariant.

e.g. the Higgs mass must be resummed



• For phase transitions, think hard 
about the power counting 

• 𝛌 ~ e3 gives a barrier

Loop-induced barriers
13

SS SSS V S SSV V V S

SSG GGS SGG GSV

GGG GGV V GG V V G ηηS

ηηG V V V V V ηηV

FFS FFS FFV FFV FFG

FIG. 3.1: The non-vanishing 2-loop Feynman diagrams for the effective potential, for gauge-fixing choices
that have propagator mixing between massive vectors and Goldstone scalars. Scalar bosons, fermions, vector
bosons, and ghosts are represented by dashed, solid, wavy, and dotted lines, respectively. The arrows on
fermion lines indicate the helicity, and large dots represent fermion mass insertions. For the FFS and FFG
diagrams, there are also diagrams with all fermion arrows reversed.

Martin and Patel (1808.07615)

Arnold and Espinosa (9212235)

T > 0 : Abelian-Higgs

Ekstedt, JL: 2006.12614
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III. PHASE TRANSITION AND POWER COUNTING

To describe patterns of symmetry breaking in perturbative quantum field theory, one can
study the scalar potential of the theory. To include quantum and thermal e�ects, one should
use the e�ective potential, and typically this is done perturbatively.EC: ButHowever, naive
application of perturbation theory to the e�ective potential leads to problems such as gauge
dependence and a breakdown of perturbation theory [27, 31].

These issues can be resolved simultaneously by applying a consistent power counting [28].
The important insight of this approach is that the loop corrections to the tree level potential
have to be large enough to change its shape. This means that the loop expansion is no
longer applicable, and perturbation theory has to be reordered according to some other
power counting scheme.

A. Power counting in the SM

The tree-level potential of the SM does not feature a barrier,

V
SM

0 („) = ≠
m

2

2 „
2 + ⁄

8 „
4
,

which means that a barrier would have to be induced by radiative corrections for a first-order
phase transition to take place. The leading thermal corrections of a bosonic field with square
mass x,

f(x) = ≠
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90T
4 + T

2
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3/2

12fi
+ O(T 0),

show that a barrier can be generated from the term ≠Tx
3/2

/12fi. A bosonic particle with
field-dependent mass squared M

2
≥ e

2
„

2 would then give a contribution ≥ Te
3
„

3
/12fi,

which EC: being cubic in „ EC: is precisely the ingredient we need so that a barrier can be
generated.3 The question is then whether these terms are EC: important large enough to
generate a barrier, and to address this question we have to turn to power counting. With
the leading thermal corrections included, the potential will be roughly of the form4

VLO(„, T ) = ≠
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3
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4
. (19)

Here m
2

e�
(T ) = m

2
≠ –T

2
/12, and – and e

3 are combinations of electroweak coupling
constants, which in the SM are given by

– = 3⁄ + 9
4g
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Õ2 + 3y
2

t , (20)

e
3 = 1

2g
3 + 1

4
1
g

2 + g
Õ2

2
3/2

. (21)

3 Note that fermionic particles do not contribute such a termJL: ; the barrier has to be generated by bosons.
4 In this equation we neglect the contributions from the temporal gauge bosons for simplicity.

• Resummation and gauge 
invariance at the same time

Konstandin and Garny (1205.3392)
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Power-counting

scale as
Z ⇠ e

2�2 ⇠ e
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Schematically, a gauge boson Z and its 3D-longitudinal mode ZL , and scalars H, G, con-
tribute to the di�erent orders of the potential as
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where  denotes loops. 2-loop calculations su�ce to calculate the potential to NNLO.
Now for the gauge dependence. Some features are quite clear up to NNLO. Scalar

masses are determined from VLO, and all terms are evaluated at �LO: Goldstone masses
are zero, which removes most of the gauge dependence. Yet the expansion of the potential,
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Results
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Figure 3: Traditional method compared to the gauge-invariant method for di�erent Higgs masses. With (a) the
critical temperate, (b) the barrier height, (c) the phase transition strength, and (d) the latent heat.

6 Discussion

We showed in this paper how to include gauge-invariant resummations in the finite tem-
perature effective potential. Beyond gauge invariant results, our method includes finite
contributions that are missed by contemporary methods. We showed how first-order tran-
sitions, which appear highly gauge-dependent, are consistently described in this frame-
work, and we used these methods to calculate a variety of observables—comparing our
results to those of the standard method.

Part and parcel of the method is the use of a consistent power-counting. Though the
specific first-order scaling was first explored in [8], a gauge-invariant method have until
now remained elusive. True, some gauge invariant calculations are known [5, 17], but
these are incomplete or focus on second-order transitions.

Others [24] have put bounds on the gauge dependence. These authors showed that
gauge dependence is suppressed for small ⇠. A pragmatic approach could then be to take
⇠ = 0 and ignore gauge dependence all-together. Yet gauge-dependence is but the fore-
runner of the real issue: an inconsistent power counting. It hardly matters that the result
is weakly gauge dependent when there are missing gauge-independent terms of unknown
size.

In section 5 we compared two differentmethods for calculating the critical temperature
and the barrier height. The first is the vanilla gauge-dependent method, and the other is
our gauge-independent method. We conclude that only some of the observables have small
gauge dependence. Not all.
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perature effective potential. Beyond gauge invariant results, our method includes finite
contributions that are missed by contemporary methods. We showed how first-order tran-
sitions, which appear highly gauge-dependent, are consistently described in this frame-
work, and we used these methods to calculate a variety of observables—comparing our
results to those of the standard method.
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and the barrier height. The first is the vanilla gauge-dependent method, and the other is
our gauge-independent method. We conclude that only some of the observables have small
gauge dependence. Not all.
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Comparisons of power counting method and standard approach (gauge dependent numerical minimization), 
 for some various values of the gauge fixing parameter, in the SM. (JL, Ekstedt: 2006.12614)

Ekstedt, JL: 2006.12614



Conclusions

• Gauge independence and resummation simultaneously 
with “ħ-expansions” that employ proper power counting

Future Work

• Further theoretical uncertainties 

• Other observables related to tunneling 

• Other models

Croon, Gould, Schicho, Tenkanen, White (2009.10080)

Camargo-Molina, Enberg, JL: 2103.14022 

https://arxiv.org/abs/2009.10080

