H-COUP: Towards determination of the Higgs sector via radiative corrections and future precision measurements

Based on:

Masashi Aiko, Shinya Kanemura (Osaka U.),

Mariko Kikuchi (Kitakyushu Coll.),

Kentarou Mawatari (Iwate U.) and Kodai Sakurai (Karlsruhe Inst. Tech.)

HPNP2021, Special Edition 2021, Mar. 27th, Online

Higgs as a Probe of New Physics

□ The Higgs sector can be a portal to the BSM sector.

Clarifying the structure of the Higgs sector is important to know the BSM!

Bottom-Up Approach

What we know now

- □ Before the Higgs discovery
 - · Electroweak ρ parameter: close to unity
 - Flavor changing neutral current: highly constrained
- □ After the Higgs discovery
 - Higgs mass 125 GeV
 - Alignment-like (SM Higgs-like)
 - \cdot (Currently) no discovery of the other Higgs bosons

Models with one Higgs doublet can explain all the above facts. This does not exclude extended structures of the Higgs sector.

One doublet + singlets, doublets and/or triplets, ... can be considered.

Keywords: Alignment/Decoupling

SM-likeness of h(125)

(Near) alignment without decoupling scenario becomes important.

4/11

What is alignment?

□ It could be defined by the deviation in the Higgs decay rate :

```
"Alignment-ness" = \Gamma(h \rightarrow VV)^{\rm NP} / \Gamma(h \rightarrow VV)^{\rm SM}
```

 \cdot Tree-level : This can be expressed by a mixing angle b/w $h_{\rm 125}$ and an extra Higgs

 Loop-level: Many parameters (mass, coupling, …) appear, and a mixing angle is no longer the "good parameter" to measure the alignment-ness.

For the determination of the Higgs sector, calculations beyond tree level are inevitable.

H-COUP

Kanemura, Kikuchi, Sakurai, KY (2017) Kanemura, Kikuchi, Sakurai, Mawatari, KY (2019)

A HCOUP

□ What is H-COUP?

х

A fortran code to calculate 1-loop corrected Higgs couplings, decay rates, BRs based on the improved OS renormalization scheme.

Downloads

- H-COUP version 2.3 : [HCOUP-2.3.zip] [The manual for H-COUP ver. 2 is here]
- H-COUP version 1.0.: [HCOUP-1.0.zip] [The manual for H-COUP ver. 1 is here]

In order to run H-COUP programs, you need to install LoopTools (<u>www.feynarts.de/looptools/</u>).

You can download the source code from here.

H-COUP Project

■ Before publication of H-COUP

Kanemura, Senaha, Okada, Yuan, hep-ph/0408364 (PRD) Kanemura, Kikuchi, KY, arXiv:1502.07716 (NPB)

 \cdot Development of the OS-scheme in the 2HDM

Kanemura, Kikuchi, Sakurai, arXiv:1511.06211 (PRD) Kanemura, Kikuchi, KY, arXiv:1511.06211 (NPB)

- Development of the OS-scheme in the Higgs singlet model and the inert doublet model
- Development of the gauge independent OS-scheme Kanemura, Kikuchi, Sakurai, KY, arXiv:1705.05399 (PRD)
- □ 2017: H-COUP Ver. 1 Kanemura, Kikuchi, Sakurai, KY, arXiv:1710.04603 (CPC)
 - 1-loop corrected h_{125} couplings can be calculated in the improved OS-scheme.
 - 4 types of the 2HDM, the Higgs singlet model and the inert doublet model are implemented.
- **2019:** H-COUP Ver. 2 Kanemura, Kikuchi, Mawatari, Sakurai, KY, arXiv:1910.12769 (CPC)
 - \cdot h₁₂₅ decay rates and BRs can be calculated at NLO EW/QCD.

Now

- □ 2021-: H-COUP Ver. 3 and beyond
 - We try to include decays of heavier Higgs bosons (H, A, H^{\pm} , …).
 - Also, we try to implement cross sections, other models (triplets, etc.), other schemes (MS-bar, etc.), …

Other Public Tools

D2HDMC Eriksson, Rathsman, Stal (2010)

- 2HDMs
- Higgs decays at NLO QCD

□(ewN)2HDECAY

Krause, Mühlleitner, Spira (2018) Krause, Mühlleitner (2019)

- 2HDMs, N2HDM
- \cdot 2 body Higgs decays at NLO EW and NLO QCD

SHDECAY Costa, Mühlleitner, Sampaio, Santos (2016)

- HSM (Real & Complex)
- \cdot Higgs decays at NLO QCD

□ Prophecy4f Altenkamp, Dittmaier, Rzehak (2018)

- 2HDMs, HSM (Real)
- $\cdot \ h \rightarrow \text{VV} \rightarrow \text{4f}$ at NLO EW & NLO QCD

■ RECOLA2 Denner, Lang, Uccirati (2018)

- 2HDMs, HSM (Real & Complex)
- General one-loop amplitudes

► Kanemura, Kikuchi, Sakurai, KY (2017)
■ H-COUP Kanemura, Kikuchi, Sakurai, Mawatari, KY (2019)

- HSM, 2HMDs, IDM
- \cdot Decays of h_{125} at NLO EW & NLO QCD

Applications of Ver. 2 [Higgs Inverse Problem]

Kanemura, Kikuchi, Mawatari, Sakurai, KY, arXiv:1906.10070 (NPB)

9/11

D Deviations in the h_{125} decay BRs at 1-loop level.

Characteristic patterns of the deviation with few % order can appear.

Towards Ver. 3 [Heavier Higgs Decays]

D Decay BR of $H \rightarrow hh$ at one-loop level.

• 2HDM type-I, $tan\beta = 2$, $mH = mA = mH^+ = 500$ GeV, $cos(\beta-a) > 0$

Allowed by perturbative unitarity & vacuum stability

Large corrections can appear due to the non-decoupling effects.

 Φ = H, A and H⁺

 $m_{\Phi}^2 = M^2 + \lambda_{\Phi} v^2$

10/11

Summary

- Now, the alignment is an important key word to study the Higgs sector, and its meaningful definition is possible at loop levels.
- H-COUP (v2) provides one-loop corrected decay rates of the h₁₂₅ in various extended Higgs sectors.
- H-COUP (v3) is now under construction, and it will be able to provide one-loop corrected heavier Higgs decays.

Applications

 $\Delta \mu_X \equiv \text{BR}(h \to XX)_{\text{NP}}/\text{BR}(h \to XX)_{\text{SM}} - 1$

Fingerprinting the Higgs Sector at NLO

Kanemura, Kikuchi, Sakurai, Mawatari, KY, PLB783, 140 (2018)

 $\cos(\beta - a) < 0$

HL-LHC: O(10)% deviation is needed for discrimination.ILC250: O(1)% deviation could be enough for discrimination!!

Higgs Couplings at 1-loop Level

Kanemura, Kikuchi, Sakurai, KY, Comp. Phys. Comm. 233, 134-144 (2018)

□ H-COUP: A fortran90 code to calculate 1-loop corrected h(125) couplings

based on the on-shell renormalization scheme

Nature of the Higgs

 \square Nature of the Higgs boson \rightarrow New physics beyond the SM

Higgs is a Fermion (Compositeness) : Chiral Symmetry Gauge boson (Gauge-Higgs Unification): Gauge Symmetry

Indirect Search = Higgs Precision Physics

"No-Loose Theorem" of the Higgs Physics