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Baryon Asymmetry of the Universe (BAU)
Our Universe is baryon-asymmetric.

(1) Baryon number violation

(2) C and CP violation

(3) Out of equilibrium

Sakharov’s conditions

❒ after inflation (scale is model dependent)

❒ before Big-Bang Nucleosynthesis (T≃O(1) MeV)

[Sakharov, JETP Lett. 5 (1967) 24]

⌘BBN =
nB

n�
= (5.8� 6.5)⇥ 10�10,

⌘CMB =
nB

n�
= (6.105� 0.055)⇥ 10�10.
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✤ B violation: anomalous (sphaleron) process 


✤ C violation: chiral gauge interaction


✤ CP violation: KM phase and/or other sources in beyond the SM


✤ Out of equilibrium: 1st-order EW phase transition (EWPT) with 
expanding bubble walls

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 (‘85) ]Sakharov’s conditions
EW baryogenesis (EWBG)

sphaleron decoupling condition
h�i 6= 0

h�i = 0

symmetric phase

broken 

phase

nB = 0 ! nB 6= 0 (sphaleron proecess)
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baryogengesis occurs outside bubbles!

�(br)
B (T ) < H(T )
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Sphaleron decoupling condition
To avoid washout of BAU, the sphaleron process must be suppressed 
after EWPT.

Parametrizing Esph = 4⇡vEsph/g,
<latexit sha1_base64="A96cx2RMhfw8eeLXXpl2fwPtZlw="></latexit>

- It is important to calculate εsph precisely.

v

T
>

g

4⇡Esph

h
44.35 + log corrections

i
⌘ ⇣sph(T )

<latexit sha1_base64="kP44Wy7qY9LA5KAy+9OE70V4eyQ="></latexit>

�(br)
B (T ) ' (prefactor)e�Esph(T )/T

< H(T ) ' 1.66
p
g⇤T

2
/mP
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dof of relativistic particles

=

1.22x1019 GeV

=

Hubble constant

EW phase transition

- We evaluate the condition at TC.
vC
TC

> ⇣sph(TC)
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- It is important to calculate εsph precisely.

v

T
>

g

4⇡Esph

h
44.35 + log corrections

i
⌘ ⇣sph(T )
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2
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- We evaluate the condition at TC.
vC
TC

> ⇣sph(TC)
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Sphaleron decoupling condition
To avoid washout of BAU, the sphaleron process must be suppressed 
after EWPT.

Parametrizing Esph = 4⇡vEsph/g,
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leading

- It is important to calculate εsph precisely.

next-to-leading

v

T
>

g

4⇡Esph

h
44.35 + log corrections

i
⌘ ⇣sph(T )
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- We evaluate the condition at TC.
vC
TC

> ⇣sph(TC)
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What is the problem?

- In non-abelian gauge theories, transverse gauge bosons 
also have thermal corrections due to magnetic mass, 
mT=O(g2T).

In this talk, we consider the mT effect on both vC/TC and ζsph. 

mT effect on vC/TC: W. Buchmuller, Z. Fodor, T. Helbig, and D. Walliser, Ann.Phys.234,260 (1994).
J. R. Espinosa, M. Quiros, and F. Zwirner, PLB314, 206 (1993).

But no detailed study of mT effect on ζsph!!

- Effective potential with daisy resummation is often used to 
evaluate the sphaleron decoupling condition.



Sphaleron in the SM 

To find a saddle point configuration,

we use noncontractible loop.

Sphaleron解を求める
saddle point = least-energy path上のmaximum-energy configuration

NCS=1

NCS=0

vacuum

vacuum

Energy

configuration
space

least-energy path/gauge trf. = noncontractible loop
!

highest symmetry config.

! 4次元SU(2) gauge-Higgs doublet系 !

L = −1
4
F a

µνF
aµν + (DµΦ)† DµΦ− λ

(
Φ†Φ− v2

2

)2

DµΦ = (∂µ − igAµ) Φ, Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν], Aµ = Aa
µ

τa

2

— Sphaleron Transition — 39/47

sphaleron

Dµ� =

✓
@µ + igAa

µ
⌧a

2

◆
,
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∼ w/o U(1)Y ∼

F a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ � g✏abcAb

µA
c
⌫ ,

<latexit sha1_base64="0BUI4y2TekTyL3mYl0CYxDerD+Q="></latexit>

[N.S. Manton, PRD28 (’83) 2019]

Manton’s ansatz.



Equations of motion for the sphaleron
with the boundary conditions:

d2

d⇠2
f(⇠) =

2

⇠2
f(⇠)(1� f(⇠))(1� 2f(⇠))� 1

4
h2(⇠)(1� f(⇠)),

d

d⇠

✓
⇠2

dh(⇠)

d⇠

◆
= 2h(⇠)(1� f(⇠))2 +

�

g2
(h2(⇠)� 1)h(⇠)
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[NOTE]
Esph(T = 0) > Esph(T 6= 0); ⇣sph(T = 0) < ⇣sph(T 6= 0)
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Energy functional

Esph =
4⇡v

g

Z 1

0
d⇠

"
4

✓
df

d⇠

◆2

+
8

⇠2
(f � f2)2 +

⇠2

2

✓
dh

d⇠

◆2

+ h2(1� f)2 +
�

4g2
⇠2(h2 � 1)2

#

=
4⇡v

g
Esph,
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A0 = 0
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Higher order corrections are important!!

Sphaleron in the SM ∼ w/o U(1)Y ∼

input: �

g2
' 0.3 (SM)
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Esph = 1.92,

(Esph = 9.08 TeV),

⇣sph = 1.17.
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We elucidate a magnetic mass effect on a sphaleron energy that is crucial for baryon number
preservation needed for successful electroweak baryogenesis. It is found that the sphaleron energy
increases in response to the magnetic mass. As an application, we study the sphaleron energy and
electroweak phase transition with the magnetic mass in a two-Higgs-doublet model. Although the
magnetic mass can screen the gauge boson loops, it relaxes a baryon number preservation criterion
more effectively, broadening the baryogenesis-possible region. Our findings would be universal in
any new physics models as long as the gauge sector is common to the standard model.

Introduction.— Sphaleron [1, 2] in electroweak (EW)
theories plays a central role in the baryon and lepton
number-violating process at high temperature and its
rate in the EW-symmetry-broken phase is crucial to suc-
cessful electroweak baryogenesis (EWBG) [3]. In par-
ticular, energy of the sphaleron, which is predominantly
scaled by a vacuum expectation value (VEV) of the Higgs
field, has to be sufficiently large in order to preserve
the baryon asymmetry, calling for strong first-order elec-
troweak phase transition (EWPT).

It is known that ordinary perturbative expansion at
zero temperature would break down at high temperature
due to uncontrollable temperature-dependent power cor-
rections. Standard prescription for this problem is called
thermal resummation that reorganizes the perturbative
expansion in a consistent manner. It is common practice
in the literature that finite-temperature effective poten-
tial is improved by resummation methods of Parwani [4]
or Arnold-Espinosa [5]. With such a resummed effective
potential, EWPT is studied in a plethora of models be-
yond the standard model (SM). Regarding the thermal
resummation for the EW gauge sector, much attention
has been given to electric masses despite a magnetic mass
of the SU(2) gauge field can in principle enter the prob-
lems. It is thus legitimate to take both the resummation
effects into consideration (for earlier studies in the SM,
see Ref. [6, 7]).

In evaluating the sphaleron rate using a WKB method,
it is necessary for consistency to use the same resummed
Lagrangian that is applied to the EWPT study. Due to
the fact that the sphaleron is a magnetic configuration,
the magnetic mass term appears at the lowest order in the
equation of motion for the sphaleron, while the electric
masses come into the gauge boson loops in the resummed
effective potential, which are higher order. Regardless of
the potential significance of the magnetic mass, devoted
study has been missing so far. Since the required strength
of the first-order EWPT is predominantly determined by
the sphaleron energy, ramifications of the magnetic mass
effect is of great importance for successful EWBG.

In this Letter, we investigate the magnetic mass effect
on the sphaleron energy and quantify its impact on the
baryon number preservation criterion (BNPC) needed
for EWBG. For illustrative purpose, we first work on
the SM at zero temperature and clarify to what extent
the sphaleron energy can be affected by the presence of
the magnetic mass. Given the fact that the magnetic
mass is inherently nonperturbative and its robust esti-
mate seems unavailable to date yet, we thus allow it to
vary within a reasonable range studied in the literature.
Then, as a realistic application, we consider a EWBG
scenario in a general two Higgs doublet model (2HDM)
(for a recent study, see, e.g., Ref. [8]) and evaluate the
sphaleron energy and BNPC with the magnetic mass at
critical temperature of EWPT. Our analysis shows that
the sphaleron energy is the increasing function against
the magnetic mass, which renders BNPC more relaxed
and EWBG-possible regions get broadened accordingly.
This conclusion would apply to any models beyond the
SM as long as the gauge sector is common to the SM.
Gauge-invariant mass term.— We first delineate how

the magnetic mass is implemented to our problem. Here
we demonstrate two different approaches and show that
the both lead to the same mass form under a certain
condition.
In general, the bilinear term of the gauge field takes

the form

L(2)
eff = Tr

[

AµΠµνA
ν
]

=
1

2
AaµΠµνA

aν , (1)

where Πµν is the self-energy and its general form in the
momentum space is cast into the form [6]

Πµν(p) = ΠL(p)Lµν(p) +ΠT (p)Tµν(p) +ΠG(p)Gµν (p)

+ΠS(p)Sµν(p), (2)

where Lµν(p) = uT
µu

T
ν /(u

T )2, Tµν(p) = gµν − pµpν/p2 −
Lµν(p), Gµν(p) = pµpν/p2, Sµν(p) = (pµuT

ν +
pνuT

µ )/
√

(p · u)2 − p2 with uT
µ = uµ−pµ(u ·p)/p2 and uµ

specifies thermal bath. We consider a static case in which

Static limit (sphaleron ansatz)p0 = 0, p ! 0 with @iAi = 0
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p0 = 0 in the rest frame of the thermal bath [uµ = (1,0)].
In this case, under the condition of ∂iAi = 0, which is
satisfied by the sphaleron ansatz adopted here, the bilin-
ear Lagrangian (1) is reduced to the local form

L(2)
eff =

1

2
ΠL(A

a
0)

2 −
1

2
ΠT (A

a
i )

2. (3)

Since the sphaleron is the magnetic object as mentioned
above, only ΠT is involved in the equations of motion for
the sphaleron. It is well known that the computation of
ΠT requires a nonperturbative approach [9]. We do not
attempt to do it here and treat it as an input parameter.
We note that the nonabelian gauge invariance requires
hight-order terms in Aµ. In the case of hard thermal
loop approximation in QCD, effective n-point (n ≥ 3)
functions of Aµ would be zero to the leading order and
only ΠL term in Eq. (3) survives in the static limit [10].
In contrast, we are not aware of the counterpart in effec-
tive theories of the magnetic mass.
In contrast to this approach, the second one is man-

ifestly gauge invariant by construction. As discussed in
Ref. [11], one of the gauge-invariant operator with a mass
dimension of two can be constructed by minimizing the
volume integral of Tr[A2

µ] along gauge orbits, i.e.,
∫

d4x A2
min = min

{U}

∫

d4x Tr
[

(AU
µ )

2
]

, (4)

where U is the gauge transformation function, that is,
AU

µ = UAµU−1 + i
g
(∂µU)U−1 with g being gauge cou-

pling. As proven, A2
min can be expressed by an infinite

series of nonlocal and gauge-invariant terms constructed
by the covariant derivative and field strength of Aµ such
as Tr[Fµν(D2)−1Fµν ] [11] (for a dedicated study of Yang-
Mill theories with this nonlocal term, see Ref. [12]). It
is shown that A2

min can be local if ∂µAµ = 0 is satis-
fied [11, 12], which greatly simplifies our calculation as
delineated below.
Sphaleron with the magnetic mass.— Now we work

out the sphaleron energy in the presence of the magnetic
mass in the SM. As demonstrated in Ref. [13], U(1)Y
contribution is rather minor so that we do not include it
in the estimate of the sphaleron energy.
The original ansatz of the sphaleron adopted in Ref. [2]

causes a divergence in the A2
i term in the energy func-

tional of the sphaleron. To avoid this, we perform
a SU(2) gauge transformation as Aµ → V AµV −1 +
i
g (∂µV )V −1 with V being the inverse of U∞ (for the ex-
plicit form of U∞, see Ref. [2]). Furthermore, after a
rigid SU(2) transformation U∞ → ULU∞UR (for UL,R,
see Ref. [2]), the ansatz of Ai is cast into the form

Ai = −
1− f(r)

gr
εijax̂jτ

a, (5)

where εija is the Levi-Civita symbol, x̂j = xj/r with

r =
√

x2
1 + x2

2 + x2
3, τa are the Pauli matrices and

f(r) denotes the profile function. Unlike the original
sphaleron ansatz, Ai is proportional to (1 − f) that is
damped exponentially at r → ∞, and thus the A2

i term
becomes finite. Most importantly, the above ansatz sat-
isfies ∂iAi = 0. Exploiting this property as well as the
A0 = 0 gauge, which is often adopted for finding a static
classical solution, Eq. (4) is reduced to the local form,
thereby the magnetic mass contribution to the energy
function of the sphaleron takes the form

∆Esph =
m2

T

2

∫

d3x Aa
iA

a
i . (6)

Adding this energy shift into the ordinary energy func-
tional of the sphaleron in the SM [2], one arrives at

Esph =
4πv

g

∫ ∞

0
dξ

[

4f ′2 +
8

ξ2
(f − f2)2 +

ξ2

2
h′2

+ (h2 + r2m)(1 − f)2 +
ξ2V0(h)

g2v4

]

,

(7)

where ξ = gvr with v being the VEV of the Higgs
field, V0(h) = λv4(h2 − 1)2/4 and rm = mT /(gv/2) =
mT /mW . From the above energy functional, it follows
that

d2f

dξ2
=

2

ξ2
(f − f2)(1 − 2f)−

1

4
(h2 + r2m)(1 − f), (8)

d2h

dξ2
= −

2

ξ

dh

dξ
+

2

ξ2
h(1 − f)2 +

1

g2v4
∂V0

∂h
, (9)

and the boundary conditions are

lim
ξ→0

f(ξ) = 0, lim
ξ→0

h(ξ) = 0, (10)

lim
ξ→∞

f(ξ) = 1, lim
ξ→∞

h(ξ) = 1. (11)

Since the magnetic mass correction is positive definite,
we expect that the resulting sphaleron would be more
massive than the usual one. Moreover, r2m could exceed
unity unlike the h2 term.
In Fig. 1, a dimensionless sphaleron energy defined by

Esph = Esph(g/4πv) is plotted as a function of rm. We
use the values of mW = 80.4 GeV, mh = 125 GeV and
v = 246 GeV to fix the input parameters. One can see
that Esph increases from 1.92 to 5.68 as rm varies from 0
to 2. This drastic change stands in stark contrast to the
dependence of the Higgs mass on Esph. As first clarified
in Ref. [2], Esph is an increasing function of the Higgs
mass, which would be at most around 2.7 even when the
Higgs mass goes to infinity. The question to be answered
is how large rm could be in a realistic case. As widely
studied, the magnetic mass is given by mT = cg2T with c
being a coefficient that is determined by nonperturbative
methods. For instance, in early studies [6, 7] it is found
in SU(2) gauge-Higgs model that c = 1/(3π) % 0.11 by

m2
L,T = lim

p0=0,p!0
⇧L,T (p

0,p)
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L(2)
e↵ =

1

2
m2

L(T )(A
a
0)

2 � 1

2
m2

T (T )(A
a
i )

2,
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Esph is modified by 

Magnetic mass corrections to Esph

Since there is no robust result, we regard c as the varying parameter.

Magnetic mass: mT = cg2T

c = 0.28 [Buchmuller, Philipsen, hep-ph/9411334]

c = 0.38 [Alexanian, Nair, hep-ph/9504256]

c = 0.35 [Patkos, Petreczky, Szep, hep-ph/9711263]

c = 0.46 [Heller, Karsch, Rank, hep-lat/9710033]

gauge-inv. 1-loop gap eq.

Lattice

}
c = 0.11 [Espinosa, Quiros, Zwirner, PLB314,206(93); 

    Buchmuller, Fodor, Helbig, Walliser, AP234,260(94)]

gauge-dep. 1-loop gap eq.
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FIG. 1. The dimensionless sphaleron energy Esph =
Esph(g/4πv) as a function of rm = mT /mW in the SM with-
out U(1)Y contribution. Here, Esph = 1.92 for rm = 0 agrees
with the result of Klinkhamer and Manton [2].

solving a gap equation in the high-T limit. However, this
result turns out to be gauge dependent. Estimates using
the gauge-invariant gap equations provide somewhat big-
ger values: c = 0.28 [14], c = 0.38 [15], and c = 0.35 [16].
On the other hand, a lattice calculation finds even bigger
value c = 0.46 [17] with a caveat [18]. Given the lack
of the convincing estimate, we treat c as the varying pa-
rameter and take the maximal value of c = 0.45 in our
analysis. It should be noted that the degree to which Esph
is enhanced depends not only on the value ofmT but that
of mW (T ) = gv(T )/2 at finite temperature T . Generally,
rm gets bigger for weaker first-order EWPT because of
rm = 2cg(TC/vC). For c = 0.45 and vC/TC = 0.3, one
would get rm ! 2, where g = 0.65 is used. Therefore,
Esph could be three times as large as the case without
the magnetic mass effect.
Now we discuss implications of the enhanced Esph

for EWBG. As alluded above, the baryon and lepton
number-changing process has to shut off in the EW bro-
ken phase, which yields BNPC as [19, 20]

v

T
>

g

4πEsph

[

44.35 + log corrections
]

≡ ζsph. (12)

where the logarithmic corrections come from the fluctua-
tion about the sphaleron such as zero mode factors, which
could be 10% correction in the minimal supersymmetric
SM [20]. Since ζsph is predominantly affected by Esph, we
do not consider the subdominant logarithmic corrections
hereafter. Without large supercooling, T can be set to
a critical temperature TC at which the Higgs potential
has two degenerate minima. As seen from Eq. (12), the
larger Esph lowers ζsph. One can find ζsph = 1.20−0.41 for
Esph obtained in Fig. 1. Therefore, the commonly used

BNPC in the literature, vC/TC > 1, does not always give
the reasonable criterion in the presence of the magnetic
mass. One remark here is that as emphasized in Ref. [20],
Esph(T = TC) tends to be smaller than Esph(T = 0), im-
plying that the above values of ζsph could be underesti-
mated to some extent. We therefore evaluate Esph(TC)
explicitly in the case of 2HDM, which is one of the sim-
plest extended models that accommodates EWBG pos-
sibility.
Application to 2HDM.— Here, we consider a general

2HDM in which an ad hoc Z2 symmetry is not imposed.
For the sake of simplicity, we take an alignment limit in
which sin(β − α) = 1, where α and β are the mixing
angles between two neutral Higgs bosons and two Higgs
VEVs, respectively. In this case, the Higgs couplings to
gauge bosons and fermions are reduced to the SM val-
ues at tree level. In addition, we put another simplifying
assumption that tanβ = 1 and Z2-breaking Higgs quar-
tic couplings are taken zero to first approximation, while
flavor-changing neutral Higgs couplings in the Yukawa
sector are allowed to exist in order to provide CP vio-
lation for baryogenesis [8]. In this setup, the effective
potential at tree-level is SM like. We emphasize here
that the above simplification do not spoil the core of our
discussion, and main findings would not be affected by
it.
Following the resummation method of Rarwani [4],

we construct the resummed Lagrangian as L = (LR −
∆m2(T )Ψ2) + (LCT + ∆m2(T )Ψ2), where LR and LCT

denote the renormalized Lagrangian and corresponding
counterterms, respectively. The thermal mass terms
of the particles in question are collectively denoted as
m2(T )Ψ2 (for explicit forms ofm2(T ), see, e.g., Ref. [21]).
The thermal masses in the first parenthesis are treated as
zeroth-order in the resummed perturbation theory while
those in the second one as the part of the counterterms.
For the magnetic mass, we expand the gauge-invariant
operator

∫

d4xA2
min as

m2
T

∫

d4x A2
min !

m2
T

2

∫

d4x AaµTµνA
aν + · · · , (13)

where the ellipsis denotes higher-order terms in Aµ. We
retain only the quadratic term that is needed for the one-
loop effective potential calculation. Taking the Landau
gauge and regularizing the resummed effective potential
using the MS scheme, one finds

V1(ϕ;T ) =
∑

i

ni

[

m̄4
i

64π2

(

ln
m̄2

i

µ̄2
− ci

)

+
T 4

2π2
IB,F (a

2
i )

]

,

(14)

where m̄i denote the thermally corrected ϕ-dependent
masses of the species of i and a2i = m̄2

i /T
2, with i =

h,H,A,H± (Higgs bosons), G0, G±, (Nambu-Goldstone
(NG) bosons), W±

L,T , ZL,T , γL,T (longitudinal and trans-
verse gauge bosons), and t (top quark), and b (bottom

2

p0 = 0 in the rest frame of the thermal bath [uµ = (1,0)].
In this case, under the condition of ∂iAi = 0, which is
satisfied by the sphaleron ansatz adopted here, the bilin-
ear Lagrangian (1) is reduced to the local form

L(2)
eff =

1

2
ΠL(A

a
0)

2 −
1

2
ΠT (A

a
i )

2. (3)

Since the sphaleron is the magnetic object as mentioned
above, only ΠT is involved in the equations of motion for
the sphaleron. It is well known that the computation of
ΠT requires a nonperturbative approach [9]. We do not
attempt to do it here and treat it as an input parameter.
We note that the nonabelian gauge invariance requires
hight-order terms in Aµ. In the case of hard thermal
loop approximation in QCD, effective n-point (n ≥ 3)
functions of Aµ would be zero to the leading order and
only ΠL term in Eq. (3) survives in the static limit [10].
In contrast, we are not aware of the counterpart in effec-
tive theories of the magnetic mass.
In contrast to this approach, the second one is man-

ifestly gauge invariant by construction. As discussed in
Ref. [11], one of the gauge-invariant operator with a mass
dimension of two can be constructed by minimizing the
volume integral of Tr[A2

µ] along gauge orbits, i.e.,
∫

d4x A2
min = min

{U}

∫

d4x Tr
[

(AU
µ )

2
]

, (4)

where U is the gauge transformation function, that is,
AU

µ = UAµU−1 + i
g
(∂µU)U−1 with g being gauge cou-

pling. As proven, A2
min can be expressed by an infinite

series of nonlocal and gauge-invariant terms constructed
by the covariant derivative and field strength of Aµ such
as Tr[Fµν(D2)−1Fµν ] [11] (for a dedicated study of Yang-
Mill theories with this nonlocal term, see Ref. [12]). It
is shown that A2

min can be local if ∂µAµ = 0 is satis-
fied [11, 12], which greatly simplifies our calculation as
delineated below.
Sphaleron with the magnetic mass.— Now we work

out the sphaleron energy in the presence of the magnetic
mass in the SM. As demonstrated in Ref. [13], U(1)Y
contribution is rather minor so that we do not include it
in the estimate of the sphaleron energy.
The original ansatz of the sphaleron adopted in Ref. [2]

causes a divergence in the A2
i term in the energy func-

tional of the sphaleron. To avoid this, we perform
a SU(2) gauge transformation as Aµ → V AµV −1 +
i
g (∂µV )V −1 with V being the inverse of U∞ (for the ex-
plicit form of U∞, see Ref. [2]). Furthermore, after a
rigid SU(2) transformation U∞ → ULU∞UR (for UL,R,
see Ref. [2]), the ansatz of Ai is cast into the form

Ai = −
1− f(r)

gr
εijax̂jτ

a, (5)

where εija is the Levi-Civita symbol, x̂j = xj/r with

r =
√

x2
1 + x2

2 + x2
3, τa are the Pauli matrices and

f(r) denotes the profile function. Unlike the original
sphaleron ansatz, Ai is proportional to (1 − f) that is
damped exponentially at r → ∞, and thus the A2

i term
becomes finite. Most importantly, the above ansatz sat-
isfies ∂iAi = 0. Exploiting this property as well as the
A0 = 0 gauge, which is often adopted for finding a static
classical solution, Eq. (4) is reduced to the local form,
thereby the magnetic mass contribution to the energy
function of the sphaleron takes the form

∆Esph =
m2

T

2

∫

d3x Aa
iA

a
i . (6)

Adding this energy shift into the ordinary energy func-
tional of the sphaleron in the SM [2], one arrives at

Esph =
4πv

g

∫ ∞

0
dξ

[

4f ′2 +
8

ξ2
(f − f2)2 +

ξ2

2
h′2

+ (h2 + r2m)(1 − f)2 +
ξ2V0(h)

g2v4

]

,

(7)

where ξ = gvr with v being the VEV of the Higgs
field, V0(h) = λv4(h2 − 1)2/4 and rm = mT /(gv/2) =
mT /mW . From the above energy functional, it follows
that

d2f

dξ2
=

2

ξ2
(f − f2)(1 − 2f)−

1

4
(h2 + r2m)(1 − f), (8)

d2h

dξ2
= −

2

ξ

dh

dξ
+

2

ξ2
h(1 − f)2 +

1

g2v4
∂V0

∂h
, (9)

and the boundary conditions are

lim
ξ→0

f(ξ) = 0, lim
ξ→0

h(ξ) = 0, (10)

lim
ξ→∞

f(ξ) = 1, lim
ξ→∞

h(ξ) = 1. (11)

Since the magnetic mass correction is positive definite,
we expect that the resulting sphaleron would be more
massive than the usual one. Moreover, r2m could exceed
unity unlike the h2 term.
In Fig. 1, a dimensionless sphaleron energy defined by

Esph = Esph(g/4πv) is plotted as a function of rm. We
use the values of mW = 80.4 GeV, mh = 125 GeV and
v = 246 GeV to fix the input parameters. One can see
that Esph increases from 1.92 to 5.68 as rm varies from 0
to 2. This drastic change stands in stark contrast to the
dependence of the Higgs mass on Esph. As first clarified
in Ref. [2], Esph is an increasing function of the Higgs
mass, which would be at most around 2.7 even when the
Higgs mass goes to infinity. The question to be answered
is how large rm could be in a realistic case. As widely
studied, the magnetic mass is given by mT = cg2T with c
being a coefficient that is determined by nonperturbative
methods. For instance, in early studies [6, 7] it is found
in SU(2) gauge-Higgs model that c = 1/(3π) % 0.11 by

Energy functional

Equations of motion

w/ b.c.

where

Sphaleron energy gets larger as mT increases.

Esph =
4⇡v

g

Z 1

0
d⇠


4f 02 +

8

⇠2
(f � f2)2 +

⇠2

2
h02

+ (h2 + r2m)(1� f)2 +
⇠2V0(h)

g2v4

�
⌘ 4⇡v

g
Esph
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⇠ = gvr, rm =
mT

mW
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2

p0 = 0 in the rest frame of the thermal bath [uµ = (1,0)].
In this case, under the condition of ∂iAi = 0, which is
satisfied by the sphaleron ansatz adopted here, the bilin-
ear Lagrangian (1) is reduced to the local form

L(2)
eff =

1

2
ΠL(A

a
0)

2 −
1

2
ΠT (A

a
i )

2. (3)

Since the sphaleron is the magnetic object as mentioned
above, only ΠT is involved in the equations of motion for
the sphaleron. It is well known that the computation of
ΠT requires a nonperturbative approach [9]. We do not
attempt to do it here and treat it as an input parameter.
We note that the nonabelian gauge invariance requires
hight-order terms in Aµ. In the case of hard thermal
loop approximation in QCD, effective n-point (n ≥ 3)
functions of Aµ would be zero to the leading order and
only ΠL term in Eq. (3) survives in the static limit [10].
In contrast, we are not aware of the counterpart in effec-
tive theories of the magnetic mass.
In contrast to this approach, the second one is man-

ifestly gauge invariant by construction. As discussed in
Ref. [11], one of the gauge-invariant operator with a mass
dimension of two can be constructed by minimizing the
volume integral of Tr[A2

µ] along gauge orbits, i.e.,
∫

d4x A2
min = min

{U}

∫

d4x Tr
[

(AU
µ )

2
]

, (4)

where U is the gauge transformation function, that is,
AU

µ = UAµU−1 + i
g
(∂µU)U−1 with g being gauge cou-

pling. As proven, A2
min can be expressed by an infinite

series of nonlocal and gauge-invariant terms constructed
by the covariant derivative and field strength of Aµ such
as Tr[Fµν(D2)−1Fµν ] [11] (for a dedicated study of Yang-
Mill theories with this nonlocal term, see Ref. [12]). It
is shown that A2

min can be local if ∂µAµ = 0 is satis-
fied [11, 12], which greatly simplifies our calculation as
delineated below.
Sphaleron with the magnetic mass.— Now we work

out the sphaleron energy in the presence of the magnetic
mass in the SM. As demonstrated in Ref. [13], U(1)Y
contribution is rather minor so that we do not include it
in the estimate of the sphaleron energy.
The original ansatz of the sphaleron adopted in Ref. [2]

causes a divergence in the A2
i term in the energy func-

tional of the sphaleron. To avoid this, we perform
a SU(2) gauge transformation as Aµ → V AµV −1 +
i
g (∂µV )V −1 with V being the inverse of U∞ (for the ex-
plicit form of U∞, see Ref. [2]). Furthermore, after a
rigid SU(2) transformation U∞ → ULU∞UR (for UL,R,
see Ref. [2]), the ansatz of Ai is cast into the form

Ai = −
1− f(r)

gr
εijax̂jτ

a, (5)

where εija is the Levi-Civita symbol, x̂j = xj/r with

r =
√

x2
1 + x2

2 + x2
3, τa are the Pauli matrices and

f(r) denotes the profile function. Unlike the original
sphaleron ansatz, Ai is proportional to (1 − f) that is
damped exponentially at r → ∞, and thus the A2

i term
becomes finite. Most importantly, the above ansatz sat-
isfies ∂iAi = 0. Exploiting this property as well as the
A0 = 0 gauge, which is often adopted for finding a static
classical solution, Eq. (4) is reduced to the local form,
thereby the magnetic mass contribution to the energy
function of the sphaleron takes the form

∆Esph =
m2

T

2

∫

d3x Aa
iA

a
i . (6)

Adding this energy shift into the ordinary energy func-
tional of the sphaleron in the SM [2], one arrives at

Esph =
4πv

g

∫ ∞

0
dξ

[

4f ′2 +
8

ξ2
(f − f2)2 +

ξ2

2
h′2

+ (h2 + r2m)(1 − f)2 +
ξ2V0(h)

g2v4

]

,

(7)

where ξ = gvr with v being the VEV of the Higgs
field, V0(h) = λv4(h2 − 1)2/4 and rm = mT /(gv/2) =
mT /mW . From the above energy functional, it follows
that

d2f

dξ2
=

2

ξ2
(f − f2)(1 − 2f)−

1

4
(h2 + r2m)(1 − f), (8)

d2h

dξ2
= −

2

ξ

dh

dξ
+

2

ξ2
h(1 − f)2 +

1

g2v4
∂V0

∂h
, (9)

and the boundary conditions are

lim
ξ→0

f(ξ) = 0, lim
ξ→0

h(ξ) = 0, (10)

lim
ξ→∞

f(ξ) = 1, lim
ξ→∞

h(ξ) = 1. (11)

Since the magnetic mass correction is positive definite,
we expect that the resulting sphaleron would be more
massive than the usual one. Moreover, r2m could exceed
unity unlike the h2 term.
In Fig. 1, a dimensionless sphaleron energy defined by

Esph = Esph(g/4πv) is plotted as a function of rm. We
use the values of mW = 80.4 GeV, mh = 125 GeV and
v = 246 GeV to fix the input parameters. One can see
that Esph increases from 1.92 to 5.68 as rm varies from 0
to 2. This drastic change stands in stark contrast to the
dependence of the Higgs mass on Esph. As first clarified
in Ref. [2], Esph is an increasing function of the Higgs
mass, which would be at most around 2.7 even when the
Higgs mass goes to infinity. The question to be answered
is how large rm could be in a realistic case. As widely
studied, the magnetic mass is given by mT = cg2T with c
being a coefficient that is determined by nonperturbative
methods. For instance, in early studies [6, 7] it is found
in SU(2) gauge-Higgs model that c = 1/(3π) % 0.11 by

d2f

d⇠2
=

2

⇠2
(f � f2)(1� 2f)� 1

4
(h2 + r2m)(1� f),

d2h

d⇠2
= �2

⇠

dh

d⇠
+

2

⇠2
h(1� f)2 +

1

g2v4
@V0

@h
,
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Particle content: SM + Φ2 2nd Higgs doublet

LY = q̄L(Y
(d)
1 �1 + Y (d)

2 �2)dR + q̄L(Y
(u)
1 �̃1 + Y (u)

2 �̃2)uR

+ l̄L(Y
(e)
1 �1 + Y (e)

2 �2)eR + h.c.
Yukawa int.

�̃1,2 = i⌧2�⇤
1,2

Higgs potential:

Assumption: CP is NOT violated by the Higgs potential and VEVs.

inputs:

General 2 Higgs doublet model (g2HDM)

w/o any symmetry, e.g. Z2

v = 246 GeV, mh = 125 GeV.
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where i = L, T and M̄2
V is obtained by dropping the thermal corrections.

The gauge bosons contribution to the effective potential is

µεV1(ϕ) = −
i

2
µε

∫

dDk

(2π)D
ln det

[

(DV
µν)

−1
]

. (F.16)

Noting that Tr(Lµν) = 1, Tr(Tµν) = D − 2 and Tr(Gµν) = 1 and those tensors live in different
subspaces and after diagonalizing M̄2

Vi
and M̄2

V , one gets

µεV1(ϕ) = −
i

2

∑

V=W,Z,γ

µε

∫

dDk

(2π)D

[

ln(−k2 + m̄2
VL
) + (D − 2) ln(−k2 + m̄2

VT
)

+ ln(−k2 + ξm̄2
V )− ln ξ

]

. (F.17)

The last two terms are irrelevant when working in the Landau gauge ξ = 0. Regularizing V1(ϕ)
using MS-scheme and putting all the contributions together, one arrives at

V1(ϕ;T ) =
∑

i=h,H,A,H±,G0,G±

W±

L,T ,ZL,T ,γL,T ,t,b

ni

[

m̄4
i

64π2

(

ln
m̄2

i

µ̄2
− ci

)

+
T 4

2π2
IB,F

(

m̄2
i

T 2

)]

, (F.18)

where µ̄2 = 4πe−γEµ2 and

nh = nH = nA = nG0 = 1, nH± = nG± = 2, nWL
= 2 · 1 = 2, nWT

= 2 · 2 = 4, (F.19)

nZL
= 1, nZT

= 2, nγL
= 1, nγT

= 2, nt = nb = −4NC . (F.20)

and

ch = cH = cA = cG0 = cH± = cG± = cWL
= cZL

= cγL = ct = cb =
3

2
, (F.21)

cWT
= cZT

= cγT =
1

2
, (F.22)

For the scalars, one finds

m̄2
h =

1

2
m2

h

(

3ϕ2

v2
− 1

)

+ ΣΦ(T ), (F.23)

m̄2
H =

[

m2
H +

1

2
m2

h − 2m2
3

]

ϕ2

v2
−

1

2
m2

h + 2m2
3 + ΣΦ(T ), (F.24)

m̄2
A =

[

m2
A +

1

2
m2

h − 2m2
3

]

ϕ2

v2
−

1

2
m2

h + 2m2
3 + ΣΦ(T ), (F.25)

m̄2
H± =

[

m2
H± +

1

2
m2

h − 2m2
3

]

ϕ2

v2
−

1

2
m2

h + 2m2
3 + ΣΦ(T ), (F.26)

m̄2
G0 = m̄2

G± =
1

2
m2

h

(

ϕ2

v2
− 1

)

+ ΣΦ(T ), (F.27)

where

ΣΦ(T ) =
1

12v2

[

6m2
W + 3m2

Z + 5m2
h +m2

H +m2
A + 2m2

H± − 8m2
3

]

T 2. (F.28)
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Effective potential

The effective potential at the tree-level is

V0(ϕ) = −
µ2

2
ϕ2 +

λeff

4
ϕ4, (F.6)

where

µ2 = −m2 +m2
3, λeff =

1

4
(λ+ λ3 + λ4 + λ5) ≡

1

4
(λ+ λ345). (F.7)

Now we derive the resummed one-loop effective potential at finite temperature. Adopting the
Rξ gauge, one finds

L(2)
eff =

1

2
Aaµ(x)δab

[

(∂2 +m2
AL)Lµν + (∂2 +m2

AT )Tµν +
1

ξ
(∂2 + ξm2

A)Gµν

]

Abν(x)

+
1

2
Bµ(x)

[

(∂2 +m2
BL)Lµν + (∂2 +m2

BT )Tµν +
1

ξ
(∂2 + ξm2

B)Gµν

]

Bν(x)

+
1

2
m2

ABA
aµ(x)δa3

[

Lµν + Tµν +Gµν

]

Bν(x). (F.8)

where gµν = Lµν + Tµν + Gµν , m2
A = g22v

2/4, m2
B = g21v

2/4 and m2
AB = −g2g1v2/2, m2

VL
=

m2
V + ΠV

L and m2
VT

= m2
V + ΠV

T , V = A,B. From this Lagrangian, the inverse gauge boson
propagator in the momentum space are given by

(DV
µν(k))

−1 =

(

(DA,ab
µν (k))−1 (DAB,a

µν (k))−1

(DAB,a
µν (k))−1 (DB

µν(k))
−1

)

, (F.9)

where

(DA,ab
µν (k))−1 = δab

[

(−k2 + m̄2
AL)Lµν + (−k2 + m̄2

AT )Tµν +
1

ξ
(−k2 + ξm̄2

A)Gµν

]

, (F.10)

(DB
µν(k))

−1 = (−k2 + m̄2
BL)Lµν + (−k2 + m̄2

BT )Tµν +
1

ξ
(−k2 + ξm̄2

B)Gµν , (F.11)

(DAB,a
µν (k))−1 = m̄2

ABδ
a3
[

Lµν + Tµν +Gµν

]

, (F.12)

where m̄2
i are the squared field-dependent masses. Let us rewrite Eq. (F.9) as

(DV
µν(k))

−1 = (−k2 + M̄2
VL
)Lµν + (−k2 + M̄2

VT
)Tµν +

(

−
k2

ξ
+ M̄2

V

)

Gµν , (F.13)

where the mass matrices take the form

M̄2
Vi
=

(

m̄2
Ai m̄2

AB

m̄2
AB m̄2

Bi

)

i = L, T, M̄2
V =

(

m̄2
A m̄2

AB

m̄2
AB m̄2

B

)

, (F.14)

in the basis (A1
µ, A

2
µ, A

3
µ, Bµ). More explicitly,

M̄2
Vi
=









g22ϕ
2/4 + ΠA

i (T ) 0 0 0
0 g22ϕ

2/4 + ΠA
i (T ) 0 0

0 0 g22ϕ
2/4 + ΠA

i (T ) −g2g1ϕ2/4
0 0 −g2g1ϕ2/4 g21ϕ

2/4 + ΠB
i (T )









, (F.15)
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where i = L, T and M̄2
V is obtained by dropping the thermal corrections.

The gauge bosons contribution to the effective potential is

µεV1(ϕ) = −
i

2
µε

∫

dDk

(2π)D
ln det

[

(DV
µν)

−1
]

. (F.16)

Noting that Tr(Lµν) = 1, Tr(Tµν) = D − 2 and Tr(Gµν) = 1 and those tensors live in different
subspaces and after diagonalizing M̄2

Vi
and M̄2

V , one gets

µεV1(ϕ) = −
i

2

∑

V=W,Z,γ

µε

∫

dDk

(2π)D

[

ln(−k2 + m̄2
VL
) + (D − 2) ln(−k2 + m̄2

VT
)

+ ln(−k2 + ξm̄2
V )− ln ξ

]

. (F.17)

The last two terms are irrelevant when working in the Landau gauge ξ = 0. Regularizing V1(ϕ)
using MS-scheme and putting all the contributions together, one arrives at

V1(ϕ;T ) =
∑

i=h,H,A,H±,G0,G±

W±

L,T ,ZL,T ,γL,T ,t,b

ni

[

m̄4
i

64π2

(

ln
m̄2

i

µ̄2
− ci

)

+
T 4

2π2
IB,F

(

m̄2
i

T 2

)]

, (F.18)

where µ̄2 = 4πe−γEµ2 and

nh = nH = nA = nG0 = 1, nH± = nG± = 2, nWL
= 2 · 1 = 2, nWT

= 2 · 2 = 4, (F.19)

nZL
= 1, nZT

= 2, nγL
= 1, nγT

= 2, nt = nb = −4NC . (F.20)

and

ch = cH = cA = cG0 = cH± = cG± = cWL
= cZL

= cγL = ct = cb =
3

2
, (F.21)

cWT
= cZT

= cγT =
1

2
. (F.22)

The thermal functions IB,F are defined as

IB,F (a
2) =

∫ ∞

0

dx x2 log
(

1∓ e−
√
x2+a2

)

, a2 = m2/T 2. (F.23)

For the scalars, one finds

m̄2
h =

1

2
m2

h

(

3ϕ2

v2
− 1

)

+ ΣΦ(T ), (F.24)

m̄2
H =

[

m2
H +

1

2
m2

h − 2m2
3

]

ϕ2

v2
−

1

2
m2

h + 2m2
3 + ΣΦ(T ), (F.25)

m̄2
A =

[

m2
A +

1

2
m2

h − 2m2
3

]

ϕ2

v2
−

1

2
m2

h + 2m2
3 + ΣΦ(T ), (F.26)

m̄2
H± =

[

m2
H± +

1

2
m2

h − 2m2
3

]

ϕ2

v2
−

1

2
m2

h + 2m2
3 + ΣΦ(T ), (F.27)
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EWPT is studied in the SM-like limit.

Using this potential, we evaluate vC/TC(≡RC) and ζsph(TC).

sin(� � ↵) = tan� = 1
<latexit sha1_base64="TcJO79pn7p6u22gup3dFdwtU7rU=">AAACB3icbVA9SwNBEN2LXzF+RS0FOQxCLAx3KmgTCNpYRjAfkDvC3GaTLNnbO3bnhBDS2fhXbCwUsfUv2Plv3FxSaOKDgcd7M8zMC2LBNTrOt5VZWl5ZXcuu5zY2t7Z38rt7dR0lirIajUSkmgFoJrhkNeQoWDNWDMJAsEYwuJn4jQemNI/kPQ5j5ofQk7zLKaCR2vlDT3NZ9AKGcOqBiPtwUvYQZKqU3Xa+4JScFPYicWekQGaotvNfXieiScgkUgFat1wnRn8ECjkVbJzzEs1ioAPosZahEkKm/VH6x9g+NkrH7kbKlEQ7VX9PjCDUehgGpjME7Ot5byL+57US7F75Iy7jBJmk00XdRNgY2ZNQ7A5XjKIYGgJUcXOrTfuggKKJLmdCcOdfXiT1s5J7XnLuLgqV61kcWXJAjkiRuOSSVMgtqZIaoeSRPJNX8mY9WS/Wu/Uxbc1Ys5l98gfW5w/GjpiZ</latexit>

with

m̄2
i are the thermally-corrected field dependent masses.
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Ve↵(';T ) = V0(') + V1(';T ),
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where

(Parwani’s method)



4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

450 460 470 480 490 500

PSfrag replacements

mΦ [GeV]

ζc=0.0
sph Rc=0.0

C

ζc=0.3
sph Rc=0.3

C

ζc=0.45
sph Rc=0.45

C

FIG. 2. RC = vC/TC and ζsph as functions of mΦ with c =
0.0, 0.3 and 0.45, where mΦ = mH = mA = mH± . We take
sin(β − α) = tan β = 1 and M = 300 GeV. The magnetic
mass is parametrized as mT = cg2T .

quark), respectively. µ̄ is a scale determined by renormal-
ization conditions described below. ni are the degrees of
freedom and their signs are determined by statistics of
the particles, and ci are 3/2 for the scalars, longitudinal
gauge bosons and fermions while 1/2 for the transverse
gauge bosons. IB,F (a2) are the one-loop thermal func-
tions for bosons and fermions, which are, respectively,

given by IB,F (a2) =
∫∞
0 dx x2 ln

[

1 ∓ exp[−
√
x2 + a2]

]

.

Their numerical evaluations are made using fitting func-
tions described in Ref. [20].
For the renormalization of the vacuum and the mass

of the SM-like Higgs (h) at one-loop level, we employ a
scheme in which the tree-level relations are not altered
by the one-loop contributions [22]. A thorny problem
in this scheme is that the massless NG bosons cause an
infrared divergence that calls for resummation of higher-
order corrections [23]. It is demonstrated in Ref. [24]
that such a NG resummation has little effect on EWPT
so that we do not take the NG bosons into account in
our numerical study. Moreover, we do not include the
SM-like Higgs boson loop contribution either since its
treatment is somewhat technical in the case of m̄2

h < 0
despite its numerical impact is rather minor. With that
in mind, we calculate vC/TC ≡ RC using Eq. (14) plus
the tree-level Higgs potential. Likewise, Esph is evaluated
by using the same resummed effective potential at TC .
For illustration, we consider a case in which all the

heavy Higgs boson masses are degenerate in masses,
mΦ ≡ mH = mA = mH± , and M3 = m2

3/(sinβ cosβ) =
(300 GeV)2 with m2

3 being the squared mixing mass be-
tween the two Higgs doublets in a generic basis where
the both Higgs doublets develop the VEVs.

In Fig. 2, RC ≡ vC/TC and ζsph are shown as func-
tions of mΦ varying from 450 GeV to 500 GeV. The solid
curves represent RC in the cases of c = 0.0 (red), 0.3
(blue), and 0.45 (black). In any case, RC gets enhanced
when mΦ is considerably bigger than M , which is due to
the fact that thermal loops of the heavy Higgs bosons en-
hance the potential barrier. The differences among the
three cases become more pronounced in the lower RC

region, where the gauge boson thermal loops are main
contributor to the potential barrier and thus the screen-
ing effect by the magnetic mass is more influential. The
three dashed curves display ζsph for c = 0.0, 0.3, 0.45 with
the same color scheme as RC . Without the magnetic
mass effect, it is found that ζsph = 1.38 − 1.32 in which
Esph(TC) = 1.67−1.75, which is smaller than Esph = 1.92
found in the case of the SM at T = 0 discussed above.
The nonzero magnetic mass cases show more dramatic
effects on ζsph compared to RC , which is attributed to
the substantial enhancement of Esph as expected from the
analysis in the SM. As is the case of RC , the magnetic
mass effect on ζsph gets more pronounced in the lowerRC

region and its change is even more drastic, which is due
to the enhancement of rm = 2cg/(πRC). For c = 0.45
and mΦ = 450 GeV, it is found that rm = 2.1. From the
EWBG point of view, the regions of RC > ζsph(TC) is
relevant, which is satisfied if mΦ ! 493 GeV for c = 0.0,
mΦ ! 486 GeV for c = 0.3, and mΦ ! 476 GeV for
c = 0.45, expanding the domain of the EWBG-possible
regions.

Conclusion.— Our analysis has unveiled that the
sphaleron energy can get increased considerably for the
nonzero magnetic mass, which relaxes BNPC and broad-
ens the parameter space for successful EWBG. The find-
ings here would apply for any other new physics models
as long as the gauge sector is common to the SM.
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vC/TC>ζsph(TC) region
vC/TC>ζC -> Γsph<H

sphaleron decoupling region can be expanded due to the magnetic mass 
effect. 

mT = cg2T
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FIG. 2. RC = vC/TC and ζsph as functions of mΦ with c =
0.0, 0.3 and 0.45, where mΦ = mH = mA = mH± . We take
sin(β − α) = tan β = 1 and M = 300 GeV. The magnetic
mass is parametrized as mT = cg2T .

quark), respectively. µ̄ is a scale determined by renormal-
ization conditions described below. ni are the degrees of
freedom and their signs are determined by statistics of
the particles, and ci are 3/2 for the scalars, longitudinal
gauge bosons and fermions while 1/2 for the transverse
gauge bosons. IB,F (a2) are the one-loop thermal func-
tions for bosons and fermions, which are, respectively,

given by IB,F (a2) =
∫∞
0 dx x2 ln

[

1 ∓ exp[−
√
x2 + a2]

]

.

Their numerical evaluations are made using fitting func-
tions described in Ref. [20].
For the renormalization of the vacuum and the mass

of the SM-like Higgs (h) at one-loop level, we employ a
scheme in which the tree-level relations are not altered
by the one-loop contributions [22]. A thorny problem
in this scheme is that the massless NG bosons cause an
infrared divergence that calls for resummation of higher-
order corrections [23]. It is demonstrated in Ref. [24]
that such a NG resummation has little effect on EWPT
so that we do not take the NG bosons into account in
our numerical study. Moreover, we do not include the
SM-like Higgs boson loop contribution either since its
treatment is somewhat technical in the case of m̄2

h < 0
despite its numerical impact is rather minor. With that
in mind, we calculate vC/TC ≡ RC using Eq. (14) plus
the tree-level Higgs potential. Likewise, Esph is evaluated
by using the same resummed effective potential at TC .
For illustration, we consider a case in which all the

heavy Higgs boson masses are degenerate in masses,
mΦ ≡ mH = mA = mH± , and M3 = m2

3/(sinβ cosβ) =
(300 GeV)2 with m2

3 being the squared mixing mass be-
tween the two Higgs doublets in a generic basis where
the both Higgs doublets develop the VEVs.

In Fig. 2, RC ≡ vC/TC and ζsph are shown as func-
tions of mΦ varying from 450 GeV to 500 GeV. The solid
curves represent RC in the cases of c = 0.0 (red), 0.3
(blue), and 0.45 (black). In any case, RC gets enhanced
when mΦ is considerably bigger than M , which is due to
the fact that thermal loops of the heavy Higgs bosons en-
hance the potential barrier. The differences among the
three cases become more pronounced in the lower RC

region, where the gauge boson thermal loops are main
contributor to the potential barrier and thus the screen-
ing effect by the magnetic mass is more influential. The
three dashed curves display ζsph for c = 0.0, 0.3, 0.45 with
the same color scheme as RC . Without the magnetic
mass effect, it is found that ζsph = 1.38 − 1.32 in which
Esph(TC) = 1.67−1.75, which is smaller than Esph = 1.92
found in the case of the SM at T = 0 discussed above.
The nonzero magnetic mass cases show more dramatic
effects on ζsph compared to RC , which is attributed to
the substantial enhancement of Esph as expected from the
analysis in the SM. As is the case of RC , the magnetic
mass effect on ζsph gets more pronounced in the lowerRC

region and its change is even more drastic, which is due
to the enhancement of rm = 2cg/(πRC). For c = 0.45
and mΦ = 450 GeV, it is found that rm = 2.1. From the
EWBG point of view, the regions of RC > ζsph(TC) is
relevant, which is satisfied if mΦ ! 493 GeV for c = 0.0,
mΦ ! 486 GeV for c = 0.3, and mΦ ! 476 GeV for
c = 0.45, expanding the domain of the EWBG-possible
regions.

Conclusion.— Our analysis has unveiled that the
sphaleron energy can get increased considerably for the
nonzero magnetic mass, which relaxes BNPC and broad-
ens the parameter space for successful EWBG. The find-
ings here would apply for any other new physics models
as long as the gauge sector is common to the SM.
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vC/TC>ζsph(TC) region
vC/TC>ζC -> Γsph<H

sphaleron decoupling region can be expanded due to the magnetic mass 
effect. 
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FIG. 2. RC = vC/TC and ζsph as functions of mΦ with c =
0.0, 0.3 and 0.45, where mΦ = mH = mA = mH± . We take
sin(β − α) = tan β = 1 and M = 300 GeV. The magnetic
mass is parametrized as mT = cg2T .

quark), respectively. µ̄ is a scale determined by renormal-
ization conditions described below. ni are the degrees of
freedom and their signs are determined by statistics of
the particles, and ci are 3/2 for the scalars, longitudinal
gauge bosons and fermions while 1/2 for the transverse
gauge bosons. IB,F (a2) are the one-loop thermal func-
tions for bosons and fermions, which are, respectively,

given by IB,F (a2) =
∫∞
0 dx x2 ln

[

1 ∓ exp[−
√
x2 + a2]

]

.

Their numerical evaluations are made using fitting func-
tions described in Ref. [20].
For the renormalization of the vacuum and the mass

of the SM-like Higgs (h) at one-loop level, we employ a
scheme in which the tree-level relations are not altered
by the one-loop contributions [22]. A thorny problem
in this scheme is that the massless NG bosons cause an
infrared divergence that calls for resummation of higher-
order corrections [23]. It is demonstrated in Ref. [24]
that such a NG resummation has little effect on EWPT
so that we do not take the NG bosons into account in
our numerical study. Moreover, we do not include the
SM-like Higgs boson loop contribution either since its
treatment is somewhat technical in the case of m̄2

h < 0
despite its numerical impact is rather minor. With that
in mind, we calculate vC/TC ≡ RC using Eq. (14) plus
the tree-level Higgs potential. Likewise, Esph is evaluated
by using the same resummed effective potential at TC .
For illustration, we consider a case in which all the

heavy Higgs boson masses are degenerate in masses,
mΦ ≡ mH = mA = mH± , and M3 = m2

3/(sinβ cosβ) =
(300 GeV)2 with m2

3 being the squared mixing mass be-
tween the two Higgs doublets in a generic basis where
the both Higgs doublets develop the VEVs.

In Fig. 2, RC ≡ vC/TC and ζsph are shown as func-
tions of mΦ varying from 450 GeV to 500 GeV. The solid
curves represent RC in the cases of c = 0.0 (red), 0.3
(blue), and 0.45 (black). In any case, RC gets enhanced
when mΦ is considerably bigger than M , which is due to
the fact that thermal loops of the heavy Higgs bosons en-
hance the potential barrier. The differences among the
three cases become more pronounced in the lower RC

region, where the gauge boson thermal loops are main
contributor to the potential barrier and thus the screen-
ing effect by the magnetic mass is more influential. The
three dashed curves display ζsph for c = 0.0, 0.3, 0.45 with
the same color scheme as RC . Without the magnetic
mass effect, it is found that ζsph = 1.38 − 1.32 in which
Esph(TC) = 1.67−1.75, which is smaller than Esph = 1.92
found in the case of the SM at T = 0 discussed above.
The nonzero magnetic mass cases show more dramatic
effects on ζsph compared to RC , which is attributed to
the substantial enhancement of Esph as expected from the
analysis in the SM. As is the case of RC , the magnetic
mass effect on ζsph gets more pronounced in the lowerRC

region and its change is even more drastic, which is due
to the enhancement of rm = 2cg/(πRC). For c = 0.45
and mΦ = 450 GeV, it is found that rm = 2.1. From the
EWBG point of view, the regions of RC > ζsph(TC) is
relevant, which is satisfied if mΦ ! 493 GeV for c = 0.0,
mΦ ! 486 GeV for c = 0.3, and mΦ ! 476 GeV for
c = 0.45, expanding the domain of the EWBG-possible
regions.

Conclusion.— Our analysis has unveiled that the
sphaleron energy can get increased considerably for the
nonzero magnetic mass, which relaxes BNPC and broad-
ens the parameter space for successful EWBG. The find-
ings here would apply for any other new physics models
as long as the gauge sector is common to the SM.
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vC/TC>ζC -> Γsph<H

sphaleron decoupling region can be expanded due to the magnetic mass 
effect. 
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FIG. 2. RC = vC/TC and ζsph as functions of mΦ with c =
0.0, 0.3 and 0.45, where mΦ = mH = mA = mH± . We take
sin(β − α) = tan β = 1 and M = 300 GeV. The magnetic
mass is parametrized as mT = cg2T .

quark), respectively. µ̄ is a scale determined by renormal-
ization conditions described below. ni are the degrees of
freedom and their signs are determined by statistics of
the particles, and ci are 3/2 for the scalars, longitudinal
gauge bosons and fermions while 1/2 for the transverse
gauge bosons. IB,F (a2) are the one-loop thermal func-
tions for bosons and fermions, which are, respectively,

given by IB,F (a2) =
∫∞
0 dx x2 ln

[

1 ∓ exp[−
√
x2 + a2]

]

.

Their numerical evaluations are made using fitting func-
tions described in Ref. [20].
For the renormalization of the vacuum and the mass

of the SM-like Higgs (h) at one-loop level, we employ a
scheme in which the tree-level relations are not altered
by the one-loop contributions [22]. A thorny problem
in this scheme is that the massless NG bosons cause an
infrared divergence that calls for resummation of higher-
order corrections [23]. It is demonstrated in Ref. [24]
that such a NG resummation has little effect on EWPT
so that we do not take the NG bosons into account in
our numerical study. Moreover, we do not include the
SM-like Higgs boson loop contribution either since its
treatment is somewhat technical in the case of m̄2

h < 0
despite its numerical impact is rather minor. With that
in mind, we calculate vC/TC ≡ RC using Eq. (14) plus
the tree-level Higgs potential. Likewise, Esph is evaluated
by using the same resummed effective potential at TC .
For illustration, we consider a case in which all the

heavy Higgs boson masses are degenerate in masses,
mΦ ≡ mH = mA = mH± , and M3 = m2

3/(sinβ cosβ) =
(300 GeV)2 with m2

3 being the squared mixing mass be-
tween the two Higgs doublets in a generic basis where
the both Higgs doublets develop the VEVs.

In Fig. 2, RC ≡ vC/TC and ζsph are shown as func-
tions of mΦ varying from 450 GeV to 500 GeV. The solid
curves represent RC in the cases of c = 0.0 (red), 0.3
(blue), and 0.45 (black). In any case, RC gets enhanced
when mΦ is considerably bigger than M , which is due to
the fact that thermal loops of the heavy Higgs bosons en-
hance the potential barrier. The differences among the
three cases become more pronounced in the lower RC

region, where the gauge boson thermal loops are main
contributor to the potential barrier and thus the screen-
ing effect by the magnetic mass is more influential. The
three dashed curves display ζsph for c = 0.0, 0.3, 0.45 with
the same color scheme as RC . Without the magnetic
mass effect, it is found that ζsph = 1.38 − 1.32 in which
Esph(TC) = 1.67−1.75, which is smaller than Esph = 1.92
found in the case of the SM at T = 0 discussed above.
The nonzero magnetic mass cases show more dramatic
effects on ζsph compared to RC , which is attributed to
the substantial enhancement of Esph as expected from the
analysis in the SM. As is the case of RC , the magnetic
mass effect on ζsph gets more pronounced in the lowerRC

region and its change is even more drastic, which is due
to the enhancement of rm = 2cg/(πRC). For c = 0.45
and mΦ = 450 GeV, it is found that rm = 2.1. From the
EWBG point of view, the regions of RC > ζsph(TC) is
relevant, which is satisfied if mΦ ! 493 GeV for c = 0.0,
mΦ ! 486 GeV for c = 0.3, and mΦ ! 476 GeV for
c = 0.45, expanding the domain of the EWBG-possible
regions.

Conclusion.— Our analysis has unveiled that the
sphaleron energy can get increased considerably for the
nonzero magnetic mass, which relaxes BNPC and broad-
ens the parameter space for successful EWBG. The find-
ings here would apply for any other new physics models
as long as the gauge sector is common to the SM.
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3 being the squared mixing mass be-
tween the two Higgs doublets in a generic basis where
the both Higgs doublets develop the VEVs.
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tions of mΦ varying from 450 GeV to 500 GeV. The solid
curves represent RC in the cases of c = 0.0 (red), 0.3
(blue), and 0.45 (black). In any case, RC gets enhanced
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hance the potential barrier. The differences among the
three cases become more pronounced in the lower RC

region, where the gauge boson thermal loops are main
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ing effect by the magnetic mass is more influential. The
three dashed curves display ζsph for c = 0.0, 0.3, 0.45 with
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mass effect, it is found that ζsph = 1.38 − 1.32 in which
Esph(TC) = 1.67−1.75, which is smaller than Esph = 1.92
found in the case of the SM at T = 0 discussed above.
The nonzero magnetic mass cases show more dramatic
effects on ζsph compared to RC , which is attributed to
the substantial enhancement of Esph as expected from the
analysis in the SM. As is the case of RC , the magnetic
mass effect on ζsph gets more pronounced in the lowerRC

region and its change is even more drastic, which is due
to the enhancement of rm = 2cg/(πRC). For c = 0.45
and mΦ = 450 GeV, it is found that rm = 2.1. From the
EWBG point of view, the regions of RC > ζsph(TC) is
relevant, which is satisfied if mΦ ! 493 GeV for c = 0.0,
mΦ ! 486 GeV for c = 0.3, and mΦ ! 476 GeV for
c = 0.45, expanding the domain of the EWBG-possible
regions.

Conclusion.— Our analysis has unveiled that the
sphaleron energy can get increased considerably for the
nonzero magnetic mass, which relaxes BNPC and broad-
ens the parameter space for successful EWBG. The find-
ings here would apply for any other new physics models
as long as the gauge sector is common to the SM.

∗ funakubo@cc.saga-u.ac.jp
† eibun.senaha@tdtu.edu.vn

[1] N. S. Manton, Phys. Rev. D 28, 2019 (1983).
[2] F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30,

2212 (1984).
[3] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov,

Phys. Lett. B 155, 36 (1985). For some reviews, see e.g.
V.A. Rubakov and M.E. Shaposhnikov, Usp. Fiz. Nauk
166, 493 (1996) [Phys. Usp. 39, 461 (1996)]; K. Fu-
nakubo, Prog. Theor. Phys. 96, 475 (1996); D.E. Mor-
rissey and M.J. Ramsey-Musolf, New J. Phys. 14, 125003
(2012).

[4] R. R. Parwani, Phys. Rev. D 45, 4695 (1992) Erratum:
[Phys. Rev. D 48, 5965 (1993)].

[5] P. B. Arnold and O. Espinosa, Phys. Rev. D 47, 3546
(1993) Erratum: [Phys. Rev. D 50, 6662 (1994)].

[6] W. Buchmuller, Z. Fodor, T. Helbig and D. Walliser,
Annals Phys. 234, 260 (1994).

vC/TC>ζsph(TC) region
vC/TC>ζC -> Γsph<H

sphaleron decoupling region can be expanded due to the magnetic mass 
effect. 

mT = cg2T
c=0.0c=0.3c=0.45

m� ⌘ mH = mA = mH±
<latexit sha1_base64="5TkOxuXN+GySmtZ63u28WBxFA8E=">AAACCHicbVDLSsNAFJ34rPUVdenCwSK4KokKuhGqbrqsYB/QxDCZTtqhM5M4MymU0KUbf8WNC0Xc+gnu/BunbRbaeuDC4Zx7ufeeMGFUacf5thYWl5ZXVgtrxfWNza1te2e3oeJUYlLHMYtlK0SKMCpIXVPNSCuRBPGQkWbYvxn7zQGRisbiTg8T4nPUFTSiGGkjBfYBD7xaj0KPPKR0AHlQveTBlamseu8lfBTYJafsTADniZuTEshRC+wvrxPjlBOhMUNKtV0n0X6GpKaYkVHRSxVJEO6jLmkbKhAnys8mj4zgkVE6MIqlKaHhRP09kSGu1JCHppMj3VOz3lj8z2unOrrwMyqSVBOBp4uilEEdw3EqsEMlwZoNDUFYUnMrxD0kEdYmu6IJwZ19eZ40Tsruadm5PStVrvM4CmAfHIJj4IJzUAFVUAN1gMEjeAav4M16sl6sd+tj2rpg5TN74A+szx/Jnpkw</latexit>

s��↵ = t� = 1, M =
p

m2
3/s�c� = 300 GeV, �6,7 = 0.

<latexit sha1_base64="/umOhCtjcbOuECoT5Vj8n99Dgf8=">AAACQ3icbVBNbxMxEPWW0paUtgGOXKxmK/VQUm8iUS4rVXCAC1KRmrRqNqxmnUlj1fuBPYsUrfa/ceEPcOMPcOEAQlyRcD4O/RrJ8vN7bzTjlxRaWRLiu7fyYPXh2vrGo8bm463tneaTp32bl0ZiT+Y6N+cJWNQqwx4p0nheGIQ00XiWXL2Z6Wef0ViVZ6c0LXCYwmWmxkoCOSpuXvg2rqIECV5EoIsJ1CHF83cY+Afcfx9G9pOhKo27HzuHdiFxubjrsCuEz99i3zkj7aaOIK5eHhzVofDbcbMl2mJe/C4IlqDFlnUSN79Fo1yWKWYkNVg7CERBwwoMKamxbkSlxQLkFVziwMEMUrTDap5BzfccM+Lj3LiTEZ+z1zsqSK2dpolzpkATe1ubkfdpg5LGr4aVyoqSMJOLQeNSc8r5LFA+UgYl6akDII1yu3I5AQOSXOwNF0Jw+8t3Qb/TDrpt8aHTOn69jGODPWe7bJ8F7Igds3fshPWYZF/YD/aL/fa+ej+9P97fhXXFW/Y8YzfK+/cfs62tqg==</latexit>

ζsph=1.17 (@tree level)



• We have studied the sphaleron decoupling condition taking the 
magnetic mass into account.


• Nonzero magnetic mass can increase the sphaleron energy.


• We applied this to 2HDM and found that the sphaleron decoupling 
condition gets more relaxed, enlarging the domain of the successful 
EWBG regions. 


• Our findings would hold in other BSM models as long as the gauge 
sector is common to the SM.

Summary
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resummations including the sunset-type diagrams, however, it turns into the second-order

phase transition [119–121], which is consistent with the aforementioned general argument.

Before closing this section, we briefly discuss the resummation in gauge theories. At

finite temperature, the Lorentz symmetry is broken by thermal bath specified by a four

vector of uµ, which takes the form of uµ = (1, 0) in the rest frame of thermal bath.

Consequently, the gauge boson self-energy Πµν(p0,p) is constructed by four basis tensors

{gµν , pµpν , uµuν , pµuν + pνuν}. It is convenient to define uT
µ = uµ − (p · u)pµ/p2 such that

uT
µp

µ = 0. With those four basis tensors, Πµν(p0,p) is generally written as

Πµν(p
0,p) = ΠL(p

0,p)Lµν(p) + ΠT (p
0,p)Tµν(p) + ΠG(p

0,p)Gµν(p) + ΠS(p
0,p)Sµν(p),

(28)

where

Lµν(p) =
uT
µu

T
ν

(uT )2
, Tµν(p) = gµν −

pµpν
p2

− Lµν(p), (29)

Gµν(p) =
pµpν
p2

, Sµν(p) =
pµuT

ν + pνuT
µ

√

(p · u)2 − p2
. (30)

Note that both Lµν and Tµν are 4-dimensionally transverse while the former (the latter) are

3-dimensionally longitudinal (transverse). In Landau gauge (ξ = 0), the resummed gauge

boson propagator has the form

Dµν(p) =
−Lµν(p)

p2 −m2 − ΠL(p0,p)
+

−Tµν(p)

p2 −m2 − ΠT (p0,p)
, (31)

where m is the gauge boson mass at T = 0. Here, two kind of the gauge boson thermal

masses are defined as

∆m2
L = lim

p→0
lim
p0→0

ΠL(p
0,p), ∆m2

T = lim
p→0

lim
p0→0

ΠT (p
0,p). (32)

The former is called electric mass and the latter magnetic mass. It should be noted that the

order of taking limits is not exchangeable. The opposite limit give different results [122].

As well known, the electric mass can arise perturbatively, which is the order of gT with

g being a gauge coupling. However, it is proven that the magnetic mass does not arise

in abelian gauge theories to all orders [122]. In non-abelian gauge theories, on the other

hand, the magnetic mass can be generated though its evaluation requires non-perturbative

methods [123]. Unlike the electric mass, the order of the magnetic mass is g2T .
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g being a gauge coupling. However, it is proven that the magnetic mass does not arise
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We elucidate a magnetic mass effect on a sphaleron energy that is crucial for baryon number
preservation needed for successful electroweak baryogenesis. It is found that the sphaleron energy
increases in response to the magnetic mass. As an application, we study the sphaleron energy and
electroweak phase transition with the magnetic mass in a two-Higgs-doublet model. Although the
magnetic mass can screen the gauge boson loops, it relaxes a baryon number preservation criterion
more effectively, broadening the baryogenesis-possible region. Our findings would be universal in
any new physics models as long as the gauge sector is common to the standard model.

Introduction.— Sphaleron [1, 2] in electroweak (EW)
theories plays a central role in the baryon and lepton
number-violating process at high temperature and its
rate in the EW-symmetry-broken phase is crucial to suc-
cessful electroweak baryogenesis (EWBG) [3]. In par-
ticular, energy of the sphaleron, which is predominantly
scaled by a vacuum expectation value (VEV) of the Higgs
field, has to be sufficiently large in order to preserve
the baryon asymmetry, calling for strong first-order elec-
troweak phase transition (EWPT).

It is known that ordinary perturbative expansion at
zero temperature would break down at high temperature
due to uncontrollable temperature-dependent power cor-
rections. Standard prescription for this problem is called
thermal resummation that reorganizes the perturbative
expansion in a consistent manner. It is common practice
in the literature that finite-temperature effective poten-
tial is improved by resummation methods of Parwani [4]
or Arnold-Espinosa [5]. With such a resummed effective
potential, EWPT is studied in a plethora of models be-
yond the standard model (SM). Regarding the thermal
resummation for the EW gauge sector, much attention
has been given to electric masses despite a magnetic mass
of the SU(2) gauge field can in principle enter the prob-
lems. It is thus legitimate to take both the resummation
effects into consideration (for earlier studies in the SM,
see Ref. [6, 7]).

In evaluating the sphaleron rate using a WKB method,
it is necessary for consistency to use the same resummed
Lagrangian that is applied to the EWPT study. Due to
the fact that the sphaleron is a magnetic configuration,
the magnetic mass term appears at the lowest order in the
equation of motion for the sphaleron, while the electric
masses come into the gauge boson loops in the resummed
effective potential, which are higher order. Regardless of
the potential significance of the magnetic mass, devoted
study has been missing so far. Since the required strength
of the first-order EWPT is predominantly determined by
the sphaleron energy, ramifications of the magnetic mass
effect is of great importance for successful EWBG.

In this Letter, we investigate the magnetic mass effect
on the sphaleron energy and quantify its impact on the
baryon number preservation criterion (BNPC) needed
for EWBG. For illustrative purpose, we first work on
the SM at zero temperature and clarify to what extent
the sphaleron energy can be affected by the presence of
the magnetic mass. Given the fact that the magnetic
mass is inherently nonperturbative and its robust esti-
mate seems unavailable to date yet, we thus allow it to
vary within a reasonable range studied in the literature.
Then, as a realistic application, we consider a EWBG
scenario in a general two Higgs doublet model (2HDM)
(for a recent study, see, e.g., Ref. [8]) and evaluate the
sphaleron energy and BNPC with the magnetic mass at
critical temperature of EWPT. Our analysis shows that
the sphaleron energy is the increasing function against
the magnetic mass, which renders BNPC more relaxed
and EWBG-possible regions get broadened accordingly.
This conclusion would apply to any models beyond the
SM as long as the gauge sector is common to the SM.
Gauge-invariant mass term.— We first delineate how

the magnetic mass is implemented to our problem. Here
we demonstrate two different approaches and show that
the both lead to the same mass form under a certain
condition.
In general, the bilinear term of the gauge field takes

the form

L(2)
eff = Tr

[

AµΠµνA
ν
]

=
1

2
AaµΠµνA

aν , (1)

where Πµν is the self-energy and its general form in the
momentum space is cast into the form [6]

Πµν(p) = ΠL(p)Lµν(p) +ΠT (p)Tµν(p) +ΠG(p)Gµν (p)

+ΠS(p)Sµν(p), (2)

where Lµν(p) = uT
µu

T
ν /(u

T )2, Tµν(p) = gµν − pµpν/p2 −
Lµν(p), Gµν(p) = pµpν/p2, Sµν(p) = (pµuT

ν +
pνuT

µ )/
√

(p · u)2 − p2 with uT
µ = uµ−pµ(u ·p)/p2 and uµ

specifies thermal bath. We consider a static case in whichStatic limit (sphaleron ansatz)p0 = 0, p ! 0 with @iAi = 0
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p0 = 0 in the rest frame of the thermal bath [uµ = (1,0)].
In this case, under the condition of ∂iAi = 0, which is
satisfied by the sphaleron ansatz adopted here, the bilin-
ear Lagrangian (1) is reduced to the local form

L(2)
eff =

1

2
ΠL(A

a
0)

2 −
1

2
ΠT (A

a
i )

2. (3)

Since the sphaleron is the magnetic object as mentioned
above, only ΠT is involved in the equations of motion for
the sphaleron. It is well known that the computation of
ΠT requires a nonperturbative approach [9]. We do not
attempt to do it here and treat it as an input parameter.
We note that the nonabelian gauge invariance requires
hight-order terms in Aµ. In the case of hard thermal
loop approximation in QCD, effective n-point (n ≥ 3)
functions of Aµ would be zero to the leading order and
only ΠL term in Eq. (3) survives in the static limit [10].
In contrast, we are not aware of the counterpart in effec-
tive theories of the magnetic mass.
In contrast to this approach, the second one is man-

ifestly gauge invariant by construction. As discussed in
Ref. [11], one of the gauge-invariant operator with a mass
dimension of two can be constructed by minimizing the
volume integral of Tr[A2

µ] along gauge orbits, i.e.,
∫

d4x A2
min = min

{U}

∫

d4x Tr
[

(AU
µ )

2
]

, (4)

where U is the gauge transformation function, that is,
AU

µ = UAµU−1 + i
g
(∂µU)U−1 with g being gauge cou-

pling. As proven, A2
min can be expressed by an infinite

series of nonlocal and gauge-invariant terms constructed
by the covariant derivative and field strength of Aµ such
as Tr[Fµν(D2)−1Fµν ] [11] (for a dedicated study of Yang-
Mill theories with this nonlocal term, see Ref. [12]). It
is shown that A2

min can be local if ∂µAµ = 0 is satis-
fied [11, 12], which greatly simplifies our calculation as
delineated below.
Sphaleron with the magnetic mass.— Now we work

out the sphaleron energy in the presence of the magnetic
mass in the SM. As demonstrated in Ref. [13], U(1)Y
contribution is rather minor so that we do not include it
in the estimate of the sphaleron energy.
The original ansatz of the sphaleron adopted in Ref. [2]

causes a divergence in the A2
i term in the energy func-

tional of the sphaleron. To avoid this, we perform
a SU(2) gauge transformation as Aµ → V AµV −1 +
i
g (∂µV )V −1 with V being the inverse of U∞ (for the ex-
plicit form of U∞, see Ref. [2]). Furthermore, after a
rigid SU(2) transformation U∞ → ULU∞UR (for UL,R,
see Ref. [2]), the ansatz of Ai is cast into the form

Ai = −
1− f(r)

gr
εijax̂jτ

a, (5)

where εija is the Levi-Civita symbol, x̂j = xj/r with

r =
√

x2
1 + x2

2 + x2
3, τa are the Pauli matrices and

f(r) denotes the profile function. Unlike the original
sphaleron ansatz, Ai is proportional to (1 − f) that is
damped exponentially at r → ∞, and thus the A2

i term
becomes finite. Most importantly, the above ansatz sat-
isfies ∂iAi = 0. Exploiting this property as well as the
A0 = 0 gauge, which is often adopted for finding a static
classical solution, Eq. (4) is reduced to the local form,
thereby the magnetic mass contribution to the energy
function of the sphaleron takes the form

∆Esph =
m2

T

2

∫

d3x Aa
iA

a
i . (6)

Adding this energy shift into the ordinary energy func-
tional of the sphaleron in the SM [2], one arrives at

Esph =
4πv

g

∫ ∞

0
dξ

[

4f ′2 +
8

ξ2
(f − f2)2 +

ξ2

2
h′2

+ (h2 + r2m)(1 − f)2 +
ξ2V0(h)

g2v4

]

,

(7)

where ξ = gvr with v being the VEV of the Higgs
field, V0(h) = λv4(h2 − 1)2/4 and rm = mT /(gv/2) =
mT /mW . From the above energy functional, it follows
that

d2f

dξ2
=

2

ξ2
(f − f2)(1 − 2f)−

1

4
(h2 + r2m)(1 − f), (8)

d2h

dξ2
= −

2

ξ

dh

dξ
+

2

ξ2
h(1 − f)2 +

1

g2v4
∂V0

∂h
, (9)

and the boundary conditions are

lim
ξ→0

f(ξ) = 0, lim
ξ→0

h(ξ) = 0, (10)

lim
ξ→∞

f(ξ) = 1, lim
ξ→∞

h(ξ) = 1. (11)

Since the magnetic mass correction is positive definite,
we expect that the resulting sphaleron would be more
massive than the usual one. Moreover, r2m could exceed
unity unlike the h2 term.
In Fig. 1, a dimensionless sphaleron energy defined by

Esph = Esph(g/4πv) is plotted as a function of rm. We
use the values of mW = 80.4 GeV, mh = 125 GeV and
v = 246 GeV to fix the input parameters. One can see
that Esph increases from 1.92 to 5.68 as rm varies from 0
to 2. This drastic change stands in stark contrast to the
dependence of the Higgs mass on Esph. As first clarified
in Ref. [2], Esph is an increasing function of the Higgs
mass, which would be at most around 2.7 even when the
Higgs mass goes to infinity. The question to be answered
is how large rm could be in a realistic case. As widely
studied, the magnetic mass is given by mT = cg2T with c
being a coefficient that is determined by nonperturbative
methods. For instance, in early studies [6, 7] it is found
in SU(2) gauge-Higgs model that c = 1/(3π) % 0.11 by

m2
L,T = lim

p0=0,p!0
⇧L,T (p

0,p)
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m2

L(T )(A
a
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2
m2
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functions of Aµ would be zero to the leading order and
only ΠL term in Eq. (3) survives in the static limit [10].
In contrast, we are not aware of the counterpart in effec-
tive theories of the magnetic mass.
In contrast to this approach, the second one is man-

ifestly gauge invariant by construction. As discussed in
Ref. [11], one of the gauge-invariant operator with a mass
dimension of two can be constructed by minimizing the
volume integral of Tr[A2

µ] along gauge orbits, i.e.,
∫

d4x A2
min = min

{U}

∫

d4x Tr
[

(AU
µ )

2
]

, (4)

where U is the gauge transformation function, that is,
AU

µ = UAµU−1 + i
g
(∂µU)U−1 with g being gauge cou-

pling. As proven, A2
min can be expressed by an infinite

series of nonlocal and gauge-invariant terms constructed
by the covariant derivative and field strength of Aµ such
as Tr[Fµν(D2)−1Fµν ] [11] (for a dedicated study of Yang-
Mill theories with this nonlocal term, see Ref. [12]). It
is shown that A2

min can be local if ∂µAµ = 0 is satis-
fied [11, 12], which greatly simplifies our calculation as
delineated below.
Sphaleron with the magnetic mass.— Now we work

out the sphaleron energy in the presence of the magnetic
mass in the SM. As demonstrated in Ref. [13], U(1)Y
contribution is rather minor so that we do not include it
in the estimate of the sphaleron energy.
The original ansatz of the sphaleron adopted in Ref. [2]

causes a divergence in the A2
i term in the energy func-

tional of the sphaleron. To avoid this, we perform
a SU(2) gauge transformation as Aµ → V AµV −1 +
i
g (∂µV )V −1 with V being the inverse of U∞ (for the ex-
plicit form of U∞, see Ref. [2]). Furthermore, after a
rigid SU(2) transformation U∞ → ULU∞UR (for UL,R,
see Ref. [2]), the ansatz of Ai is cast into the form

Ai = −
1− f(r)

gr
εijax̂jτ

a, (5)

where εija is the Levi-Civita symbol, x̂j = xj/r with

r =
√

x2
1 + x2

2 + x2
3, τa are the Pauli matrices and

f(r) denotes the profile function. Unlike the original
sphaleron ansatz, Ai is proportional to (1 − f) that is
damped exponentially at r → ∞, and thus the A2

i term
becomes finite. Most importantly, the above ansatz sat-
isfies ∂iAi = 0. Exploiting this property as well as the
A0 = 0 gauge, which is often adopted for finding a static
classical solution, Eq. (4) is reduced to the local form,
thereby the magnetic mass contribution to the energy
function of the sphaleron takes the form

∆Esph =
m2

T

2

∫

d3x Aa
iA

a
i . (6)

Adding this energy shift into the ordinary energy func-
tional of the sphaleron in the SM [2], one arrives at

Esph =
4πv

g

∫ ∞

0
dξ

[

4f ′2 +
8

ξ2
(f − f2)2 +

ξ2

2
h′2

+ (h2 + r2m)(1 − f)2 +
ξ2V0(h)

g2v4

]

,

(7)

where ξ = gvr with v being the VEV of the Higgs
field, V0(h) = λv4(h2 − 1)2/4 and rm = mT /(gv/2) =
mT /mW . From the above energy functional, it follows
that

d2f

dξ2
=

2

ξ2
(f − f2)(1 − 2f)−

1

4
(h2 + r2m)(1 − f), (8)

d2h

dξ2
= −

2

ξ

dh

dξ
+

2

ξ2
h(1 − f)2 +

1

g2v4
∂V0

∂h
, (9)

and the boundary conditions are

lim
ξ→0

f(ξ) = 0, lim
ξ→0

h(ξ) = 0, (10)

lim
ξ→∞

f(ξ) = 1, lim
ξ→∞

h(ξ) = 1. (11)

Since the magnetic mass correction is positive definite,
we expect that the resulting sphaleron would be more
massive than the usual one. Moreover, r2m could exceed
unity unlike the h2 term.
In Fig. 1, a dimensionless sphaleron energy defined by

Esph = Esph(g/4πv) is plotted as a function of rm. We
use the values of mW = 80.4 GeV, mh = 125 GeV and
v = 246 GeV to fix the input parameters. One can see
that Esph increases from 1.92 to 5.68 as rm varies from 0
to 2. This drastic change stands in stark contrast to the
dependence of the Higgs mass on Esph. As first clarified
in Ref. [2], Esph is an increasing function of the Higgs
mass, which would be at most around 2.7 even when the
Higgs mass goes to infinity. The question to be answered
is how large rm could be in a realistic case. As widely
studied, the magnetic mass is given by mT = cg2T with c
being a coefficient that is determined by nonperturbative
methods. For instance, in early studies [6, 7] it is found
in SU(2) gauge-Higgs model that c = 1/(3π) % 0.11 by

Gauge-inv. dim.2 operator

Since the sphaleron ansatz satisfies this condition, one has the same

mass form as the previous case.

It is known that 

Z
d4x A2

min = min
{U}

Z
d4x Tr[(AU

µ )
2] '

Z
d4x


Fµ⌫

1

D2
Fµ⌫ + · · ·

�
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expressed by infinite series of non-
local gauge-inv. terms.

@µA
µ = 0
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if
Z

d4x A2
min =

Z
d4x Tr[AµA

µ]
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[D. Zwanziger, Nucl. Phys. B 345, 461 (1990)]

We regard this as the magnetic mass correction to Esph.
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Magnetic mass

Since there is no robust result, we regard c as the varying parameter.

Other studies show that

In SU(2) gauge Higgs model, 

mT = cg2T, c =
1

3⇡
' 0.11
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but, this is gauge dependent.
⇒

Buchmuller, et al, AP234, 260 (1994).
Espinosa, et al, PLB314, 206 (1993);

1-loop gap eq. at high T.

m2
T =

g2T

3⇡
mT +O(v)
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1st-order EWPT

- EWBG-viable region

vC/TC > ζsph

- Too heavy Higgs could 

violate perturbativity.

- Heavy Higgs w/ non-

decoupling plays a role.
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cf.ζsph=1.17 using V0 w/o mT.
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