Dark Photon from Light Scalar Boson Decays at FASER

Takashi Shimomura (Miyazaki U.)

based on

"Dark Photon from Light Scalar Boson Decays at FASER" JHEP03 (2021), arXiv:2008.12765

in collaboration with

Takeshi Araki(Ohu U.)Kento Asai(Tokyo U.)Hidetoshi Otono(Kyushu U.)Yosuke Takubo(KEK)

March 26th, 2021 @ Higgs as a Probe of New Physics

Introduction

Non-observation of Dark Matter/BSM leads to the idea of "dark sector".

- No direct interactions between the SM and dark particles.
- Messenger particle (portal) connects two sectors.

Portals

<u>Vector portal</u>, <u>Scalar portal</u>, Heavy neutral lepton portal, Axion portal dark photon dark higgs

Dark Photon

- Gauge boson of a new U(1)_{dark} symmetry.
- Mixing with U(1)_Y or U(1)_{EM} gauge boson

$$\mathcal{L} = -rac{\epsilon}{2} F^{\mu
u} F'_{\mu
u}$$
 ϵ :gaug

 ϵ :gauge kinetic mixing

► Dark Photon (DP, A') can interact with the SM particles via ε.

Origin of DP mass

One of the dynamical origins of the mass is spontaneous breaking.

A new scalar boson should be introduced to give a mass.

Dark Higgs kinetic term

 $\mathcal{L} \supset {g'}^2 \phi^{\dagger} \phi A'_{\mu} A'^{\mu} \xrightarrow{\mathsf{U}(1)_{\mathsf{dark}} \mathsf{br.}} rac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + g' m_{A'} \phi A'_{\mu} A'^{\mu} + g' m_{A'} \phi A'_{\mu} A'^{\mu}$

Direct consequence of the mass generation.

- Dark Higgs decays into A'A'
 - Controlled by g', not ε .
 - Enhanced when $m_{A'} << m_{\phi}$.

$$\Gamma(\phi \to A'A') = \frac{{g'}^2}{8\pi} \frac{m_{A'}^2}{m_{\phi}} \beta_{\phi}(A') \left[2 + \frac{m_{\phi}^4}{4m_{A'}^4} \left(1 - \frac{2m_{A'}^2}{m_{\phi}^2} \right)^2 \right]$$

where $eta_{\phi}(A')=\sqrt{1-4m_{A'}^2/m_{\phi}^2}$

FASER experiment

- ForwArd Search ExpeRiment (FASER) at LHC, starting from 2022.
- Detector is placed 480m downstream from the ATLAS interaction point.
- Search for dark photon, dark Higgs, Axion-like particle, etc.

New light and weakly int. particles preferentially go in forward direction

	L_{\min} (m)	$L_{\rm max}$ (m)	R (m)	\mathcal{L} (ab ⁻¹)
FASER	478.5	480	0.1	0.15
FASER 2	475	480	1.0	3.0

DP search at FASER

Dark Higgs Production

Feng, Galon, Kling, Trojanowski, PRD97 (2018)

• Dark Higgs is produced from meson decays through the ϕ -h mixing.

more than 100-1000 DH can be produced

Dark Higgs Decay

Assuming $m_{\phi} >> m_{A'}, m_{f},$ $\Gamma(\phi \to A'A') \simeq \frac{{g'}^2}{32\pi} \left(\frac{m_{\phi}}{m_{A'}}\right)^2 m_{\phi}$ $\Gamma(\phi \to f\bar{f}) \simeq \frac{\theta^2}{8\pi} \left(\frac{m_f}{v}\right)^2 m_{\phi}$

- ► The scalar mainly decays into DPs for $g' > \theta$. <u>New source of DPs</u> → smaller ε can be searched
- The scalar can be long-lived for g' << θ.
 <u>Carrier of dark photon</u>
 → larger ε can be searched

Short-lived DH at FASER2

Long-lived DH at FASER2

Summary

When dark photon acquires mass from the vev of dark higgs,

- The DH-DP-DP interaction appears as the consequence of symmetry breaking.
- The signal can be found in different region for directly produced DPs both in short-lived or long-lived dark Higgs cases.
- The origin of DP mass will be investigated at FASER(2).

Thank you for your attension !

Back-Up Slides

Long-lived at FASER2

Some DP decay inside the detector even it is long-lived.

Signal Calculation

- The ϕ production from mesons is only considered.
- We have calculated the signal of DP decays. (using data of B meson production provided by Felix Kling, thanks!)

$$N = \mathcal{L} \int d\boldsymbol{p}_{A'} \frac{d\sigma_{pp \to A'X}}{dp_{A'} d\theta_{A'}} \mathcal{P}_{A'}^{\det}(\boldsymbol{p}_{A'}, \boldsymbol{p}_{\phi})$$

= $\mathcal{L} \sum_{i:\text{meson}} \sum_{j=1,2} \int dp_i d\theta_i \int d\boldsymbol{p}_{A'} \int d\boldsymbol{p}_{\phi} \frac{d\sigma_{pp \to iX}}{dp_i d\theta_i} \text{Br}(i \to \tilde{X}\phi) \text{Br}(\phi \to A'_1 A'_2)$
 $\times \mathcal{P}_{A'_j}^{\det}(\boldsymbol{p}_{A'}, \boldsymbol{p}_{\phi}) ,$

with

decay probability :
$$\mathcal{P}_{A'}^{\det}(\boldsymbol{p}_{A'}, \boldsymbol{p}_{\phi}) = \frac{1}{\bar{d}_{\phi} \cos \theta_{\phi}} \int_{z_{\phi,\min}}^{z_{\phi,\max}} dz_{\phi} e^{-\frac{z_{\phi}}{\bar{d}_{\phi} \cos \theta_{\phi}}} \frac{1}{\bar{d}_{A'} \cos \theta_{A'}} \int_{z_{A',\min}}^{L_{\max}} dz_{A'} e^{-\frac{z_{A'}-z_{\phi}}{\bar{d}_{A'} \cos \theta_{A'}}} \times \Theta(R - r_{A',R})\Theta(R - r_{A',F}),$$

• Cut $p_{A'}$ > 100 GeV is imposed.

Special thanks Felix and Sebastian

Beam Dump Exp.

For m_{ϕ} = 2 GeV, θ =10⁻⁴

CHARM experiment

proton beam energy : 400 GeV

 $N_{\text{pot}} = 2 \times 10^{18} \longrightarrow N_{\phi \text{ total}} = 3.0 \times 10^4 \ (N_B = 6.4 \times 10^{11})$

• The detection probability P ~10⁻⁴ for 0.068 < θ_{det} < 0.0126

Alekhin et al, 1504.04855

Dobrich et al, 1512.03069

 \longrightarrow $N_{A'} = 6.0 \times 10^4 \times 10^{-4} = 6$

NuCal experiment

• proton beam energy : 70 GeV $N_{\text{pot}} = 1.7 \times 10^{18} \longrightarrow N_{\phi \text{ total}} = O(10)$ (Bremsstrahlung)

The detection probability

P ~10⁻¹ for $\theta_{det} < 0.015$

 \longrightarrow $N_{A'} = O(1)$

Batell et al, 2008.08108

might not be significant, but need more detailed analyses