Cosmological consequences of supercooled confining phase transition

Yann Gouttenoire

With lason Blades, Filippo Sala and Geraldine Servant

HPNP Tokyo

24th March 2021

2017-2020

2021-2023

Naive picture

Baldes, YG, Sala, 2020

Naive picture

Dilution

Dilution

Strong sector confines

Hadron

Anti-quark

Dilution

Strong sector confines

Hadron

Anti-quark

Dilution

Strong sector confines

Hadron

Hadrons formations

Bubble wall profile

Confined phase

$$\chi = f$$

Bubble wall frame

$$\chi = 0$$

Hadrons formations

Bubble wall profile

Confined phase

$$\chi = f$$

Bubble wall frame

$$\chi = 0$$

$$\chi = 0$$

$$\chi = 0$$

$$\chi = 0$$

Hadrons formations

Bubble wall frame

$$\chi = 0$$

Hadrons formations

Bubble wall frame

$$\chi = 0$$

$$\chi = 0$$

 χ^*

Deconfined phase

$$\chi = 0$$

String fragmentation

 χ^*

Deconfined phase

$$\chi = 0$$

String fragmentation

$$\chi = 0$$

Due to color conservation

Due to color conservation

Analog to Hawking evaporation !

1. More hadrons per initial quark pair

1. More hadrons per initial quark pair

 $Y_{\rm DM}/Y_{\rm DM}^{\rm naive} \propto$

$$\log^n(\gamma T_{\rm nuc}/f)$$
 $Y_{\rm DM}^{\rm naive} \propto \left(\frac{T_{\rm nuc}}{f}\right)^3$

1. More hadrons per initial quark pair

2. Cosmological catapult

$$\log^n \left(\gamma T_{\rm nuc} / f \right)$$

$$Y_{\rm DM}^{\rm naive} \propto \left(\frac{T_{\rm nuc}}{f}\right)^3$$

1. More hadrons per initial quark pair

2. Cosmological catapult

 $E_{\rm hadron} \propto \gamma f \gg f$

$$\log^n \left(\gamma T_{\rm nuc} / f \right)$$

$$Y_{\rm DM}^{\rm naive} \propto \left(\frac{T_{\rm nuc}}{f}\right)^3$$

1. More hadrons per initial quark pair

 $E_{\rm hadron} \propto \gamma f \gg f$

2. Cosmological catapult

$$\log^n \left(\gamma T_{\rm nuc} / f \right)$$

$$Y_{\rm DM}^{\rm naive} \propto \left(\frac{T_{\rm nuc}}{f}\right)^3$$

1. More hadrons per initial quark pair

2. Cosmological catapult

Iterate

$$\log^n \left(\gamma T_{\rm nuc} / f \right)$$

$$Y_{\rm DM}^{\rm naive} \propto \left(\frac{T_{\rm nuc}}{f}\right)^3$$

1. More hadrons per initial quark pair

2. Cosmological catapult

$$\log^n \left(\gamma T_{\rm nuc} / f \right)$$

$$Y_{\rm DM}^{\rm naive} \propto \left(\frac{T_{\rm nuc}}{f}\right)^3$$

1. More hadrons per initial quark pair

$$\log^n \left(\gamma T_{\rm nuc} / f \right)$$

$$Y_{\rm DM}^{\rm naive} \propto \left(\frac{T_{\rm nuc}}{f}\right)^3$$

.

1. More hadrons per initial quark pair

$$\log^n \left(\gamma T_{\text{nuc}} / f \right)$$
 $Y_{\text{DM}}^{\text{naive}} \propto \left(\frac{T_{\text{nuc}}}{f} \right)^3$

.

Consequences on DM abundance

$$Y_{\rm DM}^{\rm naive} \propto \left(\frac{T_{\rm nuc}}{f}\right)^3$$

Consequences on DM abundance

Consequences on DM abundance

Consequences on DM abundance

Gravitational waves signature

$\Delta p = ?$

$$\Delta p = ?$$

Weakly-coupled PT

$$\Delta p = ?$$

Weakly-coupled PT

Bodeker&Moore (09' and 17')

Azatov+ 20'

$$\Delta p = ?$$

Weakly-coupled PT

Bodeker&Moore (09' and 17')

Azatov+ 20'

 $\mathcal{P}_{\rm LO} \simeq \Delta m^2 T_{\rm nuc}^2$

$$\Delta p = ?$$

Weakly-coupled PT

Bodeker&Moore (09' and 17')

Azatov+ 20'

$$\Delta p = ?$$

Weakly-coupled PT

Bodeker&Moore (09' and 17')

Azatov+ 20'

$$\Delta p = ?$$

Weakly-coupled PT

Bodeker&Moore (09' and 17')

Azatov+ 20'

$$\Delta p = ?$$

Weakly-coupled PT

Bodeker&Moore (09' and 17')

Azatov+ 20'

$$\Delta p = ?$$

Weakly-coupled PT

Bodeker&Moore (09' and 17')

Azatov+ 20'

How much supercooling is needed?

Supercooled confinement:

- 2. Friction pressure grows linearly with
- 3. Should apply already for moderate Supercooling

Next directions:

- Snowball effect ?
- **Ping-Pong effect ?**
- QCD phase transition ?
- Supercool PT in SU(N)/SUSY/Composite Higgs?

1. Dilution + string fragmentation + cosmological catapult followed by DIS

 $T_{\rm nuc} \lesssim T_{\rm c}$

Additional slides

Deep Inelastic Scattering in the Early Universe

Hadron energy in plasma (= CMB) frame

We find dominant scatterers in (p)reheated bath at

$$E_{\rm cm}^{q\bar{q}} = |p_q + p_{\bar{q}}| \simeq \sqrt{E_q E_{\bar{q}}} \simeq \sqrt{\gamma_{wp} f T_{\rm nuc}}$$

$$\gamma_{\rm cp} \simeq \frac{\gamma_{\rm wp}}{\gamma_{\rm wc}} \qquad \qquad \gamma_{\rm wc} \simeq \frac{E_{\rm cm}^{q\bar{q}}}{f} \simeq \sqrt{\gamma_{\rm wp}} \frac{T_{\rm nuc}}{f}$$

$$E_{\text{hadrons, p}} \simeq \gamma_{\text{cp}} \frac{E_{\text{cm}}^{q\bar{q}}}{\langle N_{\text{hadron}} \rangle} \simeq \frac{\gamma_{\text{wp}}}{E_{\text{cm}}^{q\bar{q}}/f} \frac{E_{\text{cm}}^{q\bar{q}}}{\langle N_{\text{hadron}} \rangle} \simeq \frac{\gamma_{\text{wp}} f}{\langle N_{\text{hadron}} \rangle}$$

Dark Matter candidates

(WIMPs=Weakly-Interacting Massive

Parti	cles)
-------	-------

Entropy injection

2) After an inflationary era

Supercooled confinement

ſ $N_e = \log$ nuc

Baldes, Gouttenoire, Sala, 2020

Nearly-conformal strong sector

Composite states $\supset DM$

CFT/Poincaré: dilaton σ - pNGB

SUPERCOOLING

Nearly-conformal strong sector

$$V_{\rm dec}(T) = -c N^2 T^4$$

Confined phase

$$V_{\text{conf}}(\sigma) = g_{\sigma}^{2} \sigma^{4} - \epsilon(\sigma) \sigma^{4}$$
$$\epsilon(\sigma) = g_{\sigma}^{2} \left(\frac{\sigma}{f}\right)^{\gamma_{\epsilon}}, \quad \gamma_{\epsilon} < 0$$

Super-cooling starts for: $T_{\text{start}} \sim f$

ends for: $T_{\text{nuc}} \sim c_1 f \operatorname{Exp} - c_2 \frac{f^2}{m_{\sigma}^2}$

Nearly-conformal strong sector

- Hyp: strong sector conformally invariant in the UV
 - Scale invariance explicitly broken by a slightly relevant operator $\mathscr{L} \supset \epsilon \ O_{\epsilon}$, $[O_{\epsilon}] = 4 + \gamma_{\epsilon}$

$$\rightarrow \quad \epsilon = g_{\sigma}^2 \left(\frac{\mu}{f}\right)^{\gamma_{\epsilon}}, \quad \gamma_{\epsilon} < 0$$

- \rightarrow Scale inv. spontanously broken
- \rightarrow pNGB: the dilation σ

$$V_{\rm conf}(\sigma) = \left(1 - \left(\frac{\sigma}{f}\right)^{\gamma_{\epsilon}}\right) g_{\sigma}^2 \sigma^4$$

Gravitational Waves from Phase Transition

$$\Omega_{\rm GW} \propto \left(H/\beta\right)^2 \qquad \beta^2$$

$$\frac{\beta}{H} \simeq T \frac{dS_4}{dT} \bigg|_{T_{\text{nuc}}} \simeq 15 \left(\frac{10}{N_{\text{e-fol}}} \right)$$

Standard 1st order PT

 $\beta/H \sim 100$

Randall Servant hep-ph/0607158,...

Gravitational Waves from Phase Transition

Nucleation Temperature

Supercooling begins at

Bubble nucleation ends SC at T_1

 $\Gamma(T_{\rm nuc})$

Bounce action $S_4 \approx 100$

 $T_{\rm start} \sim f$

$$F_{\rm nuc} \sim f \exp\left(-c \frac{f^2}{m_{\sigma}^2}\right)$$

$$\sim H^4(T_{\rm nuc})$$

Tunneling rate
$$\Gamma \sim T^4 \left(\frac{S_4}{2\pi}\right)^2 e^{-S_4}$$

Nucleation Temperature

For small m_{σ} PT seem to never complete!

DM abundance after supercooling

Standard Supercooling

2 possibilities: Combi DM: ligh e.g. BR

Hambye, Strumía, Teresí 18 -> Baldes, Gouttenoíre, Sala, Servant 19

$$\times$$
 BR \times N_{frag}

Branching ratio quark -> DM String fragmentation

inatoric	Thermal distrib.
nt meson	DM: heavy baryon
$\simeq 2/N_f^2$	$BR \propto \exp - m_{DM}/f$
DIS in the Sky: result

Brute force: íterate this

untíl $E_{\rm CM} \sim \sqrt{TE_{\rm hadron}} = f$

O(1) fraction of initial hadron energy converted into hadron masses

1. String fragmentation + quark ejection

 $Y_{\rm DM} / Y_{\rm DM}^{\rm naive} \propto \log^n \left(\gamma_{wp} T_{\rm nuc} / f \right)$

2. Deep Inelastic Scattering

Consequences on DM abundance

1. String fragmentation + quark ejection

 $Y_{\rm DM} / Y_{\rm DM}^{\rm naive} \propto \log^n \left(\gamma_{wp} T_{\rm nuc} / f \right)$

2. Deep Inelastic Scattering

Consequences on DM abundance

Cosmological consequences

1. More hadrons per initial quark pair

quark ejected

 $\Gamma_{\rm nucl} \sim f/N$

Bubble wall

hadronisation

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

- $\Gamma_{\rm nucl} \sim f/N$ \gtrsim
- **Bubble wall**

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

quark ejected

 $\Gamma_{\rm nucl} \sim f/N$

Bubble wall

hadronisation

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

- $\Gamma_{\rm nucl} \sim f/N$ \gtrsim
- **Bubble wall**

 $\Gamma_{\rm q-string} \sim \pi f^{-2} \times \gamma_{\rm wp} T_{\rm nuc}^3$

 $\Gamma_{\rm nucl} \sim f/N$ \gtrsim

