At a glance: Electroweak (EW) symmetry non-restoration (SNR) at high temperature (T) and vacua trapped in a metastable minimum at zero T are possible phenomena within the N2HDM thermal history that further constrain its parameter space

Fate of the electroweak symmetry in the early universe: Non-restoration and trapped vacua in the N2HDM T. Biekötter, S. Heinemeyer, J. M. No, <u>M. Olea</u>, G. Weiglein

1. <u>INTRODUCTION</u>: The first-order EW phase transition (FOEWPT) has been extensively studied in the N2HDM...

but what other finite T effects could occur within this model?

Trapped vacua: Numerous studies take the existence of a critical temperature (T_c) as a sufficient condition for a FOEWPT. We show that this is not always the case and leads to incorrect specifications of the parameter space. **EW SNR**: It is commonly assumed that the EW symmetry gets restored at high T. This is not always the case. We define **3 coefficients to identify N2HDM points with EWSNR**.

2.1. <u>MODEL</u>: N2HDM = 2HDM + real scalar singlet → 3 CP-even,
1 CP-odd Higgs boson and 2 charged Higgs bosons. 3 real vevs.
2.2. <u>METHODS</u>:

1) We apply **theoretical and experimental constraints** to the N2HDM parameter space (perturbative unitarity, flavor physics...)

2) Numerical analysis (studying trapped vacua). Calculation of the critical and the transition temperature (Tn) for N2HDM points.

3) Analytical analysis (studying EW SNR). Study of the curvature of the N2HDM potential at the origin of field space in its **high-T approximation.** We defined **three coefficients c**_{ii} that encode the sign of the curvature of the EW preserving minima at high T:

 $H^0_{ij} = \left. \frac{\partial^2 V}{\partial \rho_i \partial \rho_j} \right|_{(0,0,0)}$

$$c_{ii} \equiv \lim_{T \to \infty} H_{ii}^0/T^2 > 0$$

3. <u>RESULTS:</u>

Trapped vacua: Singlet component of one of the CP-even Higgs vs. its mass. Color bar: Tc (right), Tn (left). Black points are unphysical.

EW SNR: For all the points in the scan $c_{11} < 0 \rightarrow$ the EW symmetry at high T can't be restored at the origin of field space and, under certain conditions, also outside.

4. CONCLUSIONS:

- With the coefficients **c**_{ii} one can easily find regions of the N2HDM parameter space **where EW SNR happens** at high T.

- The calculation of the **Tn** is **needed** to specify the allowed parameter space.

María Olea - DESY - ArXiv: 2103.12707

1. **One-loop effective potential**

L

$$H_{11}^{S}(\rho_{3},T) = \frac{\partial^{2} V}{\partial \rho_{1}^{2}}\Big|_{(0,0,\rho_{3})} \quad c_{11}^{S} = c_{11} + \mathcal{O}\left(\frac{v_{S}(T)^{2}}{T^{2}}\right) \quad c_{11}^{S} = \lim_{T \to \infty} \frac{H_{11}^{S}(v_{S}(T),T)}{T^{2}}$$

Under certain conditions, $|\lambda_6|, |\lambda_7|, |\lambda_8| < 1$ the coefficients C_{ii} also control the EW symmetry restoration at high T independently of the Z₂ symmetry restoration.

3. Trapped vacua

Input parameters of the scan appearing in the figures of the poster

m_{h_a}	m_{h_b}	m_{h_c}	m_A	$m_{H^{\pm}}$	aneta	$C^2_{h_a t \bar{t}}$	$C_{h_aVV}^2$	R_{b3}	m_{12}^2	v_S
125.09	[30, 1000]	400	650	650	2	1	1	[-1, 1]	65000	[1, 1000]
Computation of the transition temperature Tn						Bounce action				
$\int_{T_n}^{T_c} \frac{T^4}{H^4} \frac{A(T)}{T} e^{-S_3(T)/T} dT \approx 1$				~ 1	L.	$S_{3} = 4\pi \int r^{2} \mathrm{d}r \left[\frac{1}{2} \left(\frac{\mathrm{d}\phi_{\mathrm{B}}}{\mathrm{d}r} \right)^{2} + V \left(\phi_{\mathrm{B}}, T \right) \right]$				