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Abstract
We consider an anomaly-free U(1) extension of the Standard Model with three right-handed neutrinos (RHNs)

and two complex scalars, wherein the charge assignments preclude all tree-level mass terms for the neutrinos.

Considering this setup, in turn, to be only a low-energy effective theory, we introduce higher-dimensional terms

a la Froggatt-Nielsen to naturally generate tiny neutrino masses. One of the RHNs turns out to be very light,

thereby constituting the main decay mode for the Z ′ and hence relaxing the LHC dilepton resonance search con-

straints. The lightest RHN has a lifetime comparable to or bigger than the age of the Universe, and, hence, could

account for a non-negligible fraction of the dark matter.

Motivation for an extra U(1)

• Theoretical motivation to introduce higher-dimensional operators through an extra U(1): concept

of generalized Frogatt-Nielsen set up.

• Traditional Z’ phenomenology can be altered by initiation of new decay modes(eg. a pair of

right-handed neutrinos(RHN), pair of new scalars etc.)

• It can potentially relax hitherto most constraining dilepton bound on the Z’ mass.

• These higher-D operators can be utilized to produce small SM neutrino mass through a see-saw

like mechanism, allowing for light RHN, such that they are accessible at colliders.

• If some of the RHNs are light, they can be viable dark matter.

• If two of the RHNs have similar masses, it can lead to resonant leptogenesis

The model

• The scalar lagrangian is given by:
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• The heavy neutral gauge boson masses are given by
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• The scalar part is constructed out of two complex scalars, with a U(1) × U(1) global symmetry
with the potential:
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where ξ1,2, ρ1,2 are real fields and x1,2 are the two vevs.

• The massless pseudoscalar is given by
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• The mixing angle and the masses of the two real scalars and are given by:
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• We stick to the most non-trivial rational values of zi s: 4,4 and −5.

Anomaly Expression
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Neutrino mass and interactions

• The Lagrangian for neutrino masses is given by:

Lνmass = LDirac + LWein.;
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where the couplings yiα, ỹi, wij, sαβ, sα3 and s33 are dimensionless and the exponents satisfy
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• Taking zχ1 = −3/4,zχ2 = −4 and restricting ourselves to operators of mass-dimension 12, we
have

Lνmass ≈ L(5) + L(8) + L(12) + H.c.
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• From the previous table we see that the charge assignment makes one of the RHN to become very

light(can be a viable dark matter).

• The structure of the neutrino mass matrix looks like:
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• The 3× 3 block diagonalised matrix is then given by:

M3×3 = −DM−1
N DT +O(M−2

N ).

• The mass matrix is diagonalised by the PMNS matrix U

UTM3×3U = M̂ , M̂ ≡ diag(ν1, ν2, 0)

Figure 1: Correlation of Yukawa couplings in the Dirac sector for neutrino masses in normal hierarchy. Allowed points after diagonalization of neutrino mass matrix

satisfying the bound on total mass of three neutrino species (in yellow), points with satisfying the bound on ∆m2
32 (in purple) and allowed points after another bound of

∆m2
12 (in red).

Figure 2: Correlation of Yukawa couplings in the Dirac sector for an inverted hierarchy of neutrino masses.

Z’phenomenology

• To leading order, the production cross-section is given by:

σ(pp→ Z ′ +X) ∝ (z2Q + z2u)Fu + (z2Q + z2d)Fd .
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• Following three figures show branching ratios of relevant channels:
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Figure 3: Branching ratios of various two-body decay modes of Z ′ as functions of its mass MZ ′ for (a) zQ = −1/4 and

(b) zQ = −1/3. In (c), we show similar BRs as functions of zQ for MZ ′ = 3 TeV. For these plots, we choose gz = 0.15.

Here, j includes u, d, c, s, b and ℓ includes e, µ, τ .
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Figure 4: Comparison of the 95% CL upper bound on the observed and the expected σ(pp → Z ′) × BR(Z ′ → ℓℓ) obtained from the ATLAS dilepton resonance

search data at the 13 TeV LHC with L = 139 fb−1 with the theoretical predictions of our model for zQ = −1/4 and −1/3 choices. We use the reference value for the U(1)z

gauge coupling gz = 0.15. The green and yellow bands represent the 1σ and 2σ uncertainty regions of the expected values respectively.Exclusion regions in the MZ ′ − gz

plane for fixed (a) zQ = −1/4 and (b) zQ = −1/3 and in (c) in the MZ ′ − zQ plane for fixed gz = 0.15. We show exclusion regions using T -parameter, Z-width, and the

latest dilepton and dijet data from the LHC.

DM?

• The mass of the lightest RHN is given by:

m(Ψ) ∼
(
sα3

x41x2
Λ4

)2
Λ

x22
∼ s2α3ξ

7x .

This gives a mass of few keVs for sα3 of 0.05 and N1,2 1.2 TeV.

• The mixing between the lightest RHN and the three light neutrinos can be written as:

Ψ ≈ cos θiN3 + sin θiνi , ν ′ ≈ − sin θiN3 + cos θiν ,

• This leads to the Z-mediated decay mode:

Γi = Γ(Ψ → νiν̄jνj) ∼
G2

FM
5
N3

192π3
sin2 θi

(
1− δij

2

)
,

• This gives a lifetime barely τψ > τU . We plan to investigate the relic density and the various

contraints on it in a future project.

Conclusion

• We introduced Higher-Dimensional effective operators by extending the SM gauge group by an

extra U(1).

• We utilised the power of higher-dimensional operators to arrive at the correct neutrino masses

obeying all neutrino constraints and without resorting to ultra-small couplings.

• We showed that this kind of framework leads to a relaxed bound on Z’ mass from the dilepton

and dijet data.

• We can potentially solve two big shortcomings of SM: Dark Matter and Matter-Antimatter asym-

metry.
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