Non-thermal Production of PNGBHPNP2021Dark Matter and InflationYA-Toma-Yoshioka, JHEP03(2021)130, arXiv:2012.10286[hep-ph]

We study the pNGB dark matter relic abundance from the out-of-equilibrium production via feeble Higgs portal coupling and investigate the possibility the radial component plays the role of inflation. \rightarrow The dark matter mass should be less than a few GeV in the wide range of the reheating temperature and the inflaton mass.

SM + singlet complex scalar w/ softly broken global U(1)

$$\mathcal{V}(H,\Phi) = -\mu_H^2 |H|^2 + \frac{\lambda_H}{2} |H|^4 - \frac{\mu_\Phi^2}{2} |\Phi|^2 + \frac{\lambda_\Phi}{2} |\Phi|^4 + \lambda_{H\Phi} |H|^2 |\Phi|^2 - \frac{m^2}{4} \left(\Phi^2 + \overline{\Phi}^2\right)$$

U(1) breaking \rightarrow (p)NGB \rightarrow candidate of DM

Nature of (p)NGB ⇒ 1. Escaping from the constraints of direct detections (soft pion theorem) [Gross-Levedev-Toma (2017)]

BackUp-1 Non-thermal production of DM

 $n_D = n_\chi + 2\mathrm{Br}^{\phi \to \chi\chi} n_\phi$ Net dark matter number density dn_D $+ 3Hn_D = 2\left[\left\langle\sigma_{H^{\dagger}H\to\chi\chi}\bar{v}\right\rangle + 4\mathrm{Br}^{\phi\to\chi\chi}\left\langle\sigma_{H^{\dagger}H\to\phi\phi}\bar{v}\right\rangle + 2\mathrm{Br}^{\phi\to\chi\chi}\left\langle\sigma_{H^{\dagger}H\to\phi}\bar{v}\right\rangle\right](n_H^{\mathrm{eq}})^2$ 10^{30} 10^{-2} $H^{\dagger}H \rightarrow \chi \chi$ $H^{\dagger}H \rightarrow \phi \phi$ - - - - 10^{-4} 10^{25} $H^{\dagger}H \rightarrow \phi$ -Reaction rate $[GeV^4]$ 10^{-6} - PLANCK 10^{20} $Y_D = n_D/s$ 10^{-8} 10^{15} 10^{-10} $T \sim m_{\phi}$ 10^{10} 10^{-12} 10^{5} 10^{-14} Our formula MicrOMEGAs w/ thermal mass MicrOMEGAs w/o thermal mass 10^{-16} 10^{0} 10^{-11} 10^{-14} 10^{-12} 10^{-14} 10^{-13} 10^{-12} 10^{-10} 10^{-16} 10^{-10} 10^{-6} 10^{-8} m_{χ}/T m_{χ}/T When the temperature is around mass of ϕ , $4m_h^2$ $Y_D^{\rm IR} \sim \frac{405\sqrt{10}M_P}{(2\pi)^5 a_*^S a_*^{1/2} \lambda_{\Phi} m_{\phi}} \frac{\lambda_{\Phi}^2 \lambda_{H\Phi}^2}{\lambda_{\Phi}^2 + \lambda_H^2}$ the DM is mainly produced from the leak of the SM thermal bath.

Cf. UV freeze-in

$$Y_D^{\rm UV} \sim \frac{135\sqrt{10}\lambda_{H\Phi}^2 M_P T_R^3}{4\pi^8 g_*^S g_*^{1/2} m_\phi^4}$$

In the UV freeze-in, the DM relic is created at the initial time, temperature being reheating temperature $T = T_R$

BackUp-2

Inflation

Introduce the non-minimal coupling of Φ to create the flat inflaton potential

