Probing charged lepton number violation via *ee'ww* Kazuki Enomoto (Osaka U.) Based on Mayumi Aoki, KE, Shinya Kanemura, PRD 101 (2020) 115019 and the work in progress.

I. Introduction ($\ell \ell' WW$ operator)

The origin of tiny neutrino masses is still unknown. A key to solving the mystery

 W^+

Lepton Number Violation (LNV)

LNV at high energies = LNV higher dimensional operators [Weinberg, PRL(1979)], [Babu, Leung, NPB(2001)] $\ell\ell'WW$ operators

• They include only charged leptons (not ν)

Rich phenomenology would be expected.

II. Lagrangian

• $\ell \ell' W W$ oeps. are from gauge invariant d = 7 or d = 9 LNV opes. [F. del Aguila, et al, JHEP(2012)], [M. Gustafsson, PRL(2013)]

$$\frac{\text{Left-Handed (LH)}}{\ell\ell'WW} \mathscr{L} = \mathscr{L}_{SM} + \frac{C_5^{\ell\ell'}}{\Lambda} (\overline{\tilde{L}_{\ell}}H) (\tilde{H}^{\dagger}L_{\ell'}) + \frac{C_7^{\ell\ell'}}{\Lambda^3} (\overline{\tilde{L}_{\ell}}D_{\mu}L_{\ell'}) (\tilde{H}^{\dagger}D^{\mu}L_{\ell'}) (\tilde{H}^{\mu}L_{\ell'}) (\tilde{H}^{\mu}L_{\ell'}) (\tilde{H}^{\mu}L_{\ell'}) (\tilde{$$

Weinberg ope. <u>Right-Handed (RH)</u> $\mathscr{L} = \mathscr{L}_{SM} + \frac{C_5^{\ell\ell'}}{\Lambda} \left(\overline{\tilde{L}_{\ell}} H \right) \left(\tilde{H}^{\dagger} L_{\ell'} \right) + \frac{C_9^{\ell\ell'}}{\Lambda^5} \left(\overline{\ell_R^c} \ell_R^{\prime} \right) \left(\tilde{H}^{\dagger} D_{\mu} H \right)^2$ $\ell\ell'WW$

Neutrino masses are generated by Weinberg ope. at tree level. = 7,9 opes. contribute to ν masses at loop level (Sec.IV)

A. Details of Background reduction

SM backgrounds

1. $pp \rightarrow \ell^+ \ell^- jj$ with charge mis-id.

2. $pp \rightarrow \ell^+ \ell^{'+} \nu_{\ell} \nu_{\ell'} jj$

Kinematical cuts

Basic cuts (due to detector performance)

 $p_T^j > 30 \text{ GeV}, |\eta_j| < 5.0, p_T^{\ell} > 20 \text{ Gev}, |\eta_{\ell}| < 2.5$

VBF cuts

$$m_{jj} > 500 \text{ GeV}, |\Delta \eta_{jj}| > 2.5$$

Other cuts

$$p_T^{\ell} > 500 \text{ GeV}, \quad p_T < 20 \text{ GeV}$$

			1		1	I
	$C/\Lambda = 1 \text{ TeV}^{-1}$		Basic cut	+ VBF cut	$+ p_T \operatorname{cut}$	$+ p_T^\ell \operatorname{cut}$
* C/Λ is coefficient of d = 5 $\ell\ell'WW$ op		Signal (pb)	4.69	4.5	4.5	2.9
	of	eff.	-	96 %	100~%	64~%
		$\mu^+\mu^- jj$ (pb)	117	4.1	4.1	$5.3 imes10^{-5}$
	e.	eff.	-	3.5%	100%	$1.3 imes 10^{-3}$ %
		$\mu^+\mu^+\nu_\mu\nu_\mu jj$ (pb)	$3.71 imes 10^{-3}$	1.40×10^{-3}	$6.5 imes 10^{-5}$	6×10^{-9}
		eff.	-	38~%	4.6~%	0.01~%

Backup slide1

 $\blacksquare d = 7$ (9) operators contribute Majorana ν masses

