Testing the CP nature of the Higgs boson

Stefania Gori UC Santa Cruz

HPNP Special Edition 2021

March 26, 2021

Plan of the talk

1. Main question & Introduction :

Can the Higgs still have (hidden) CP violating (CPV) couplings? Experimental status of the searches for an electron EDM

2. <u>Indirect</u> constraints on CPV Higgs couplings

* EDM constraints: a complete (gauge invariant) calculation
 * Higgs rate measurements
 * Di-boson production

3. <u>Direct</u> constraints on CPV Higgs couplings

Differential distributions in Higgs boson productions / decays
 Possible new searches for heavy CPV Higgs bosons

Main references for this talk

Altmannshofer, SG, Hamer, Patel, 2009.01258

SG, Hamer, in preparation (2104.xxxxx ?)

Focusing on 2HDMs

Higgs and CP violation

In the Standard Model (SM),

The only source of CP violation comes from the electroweak sector (CKM phase).
The Higgs has scalar couplings with SM particles.

We need to test these two statements!

From the experimental point of view,

The Higgs CP nature is one of the least known properties of the Higgs boson.
By now, the CP-odd hypothesis is strongly disfavored.

What if the Higgs is a CP even - CP odd admixture?

Generically, UV scenarios (e.g. 2HDMs) involve extended Higgs sectors and the possibility of CPV Higgs couplings.

Baryon asymmetry (typically) requires new sources of CPV

EDMs, experimental status & prospects

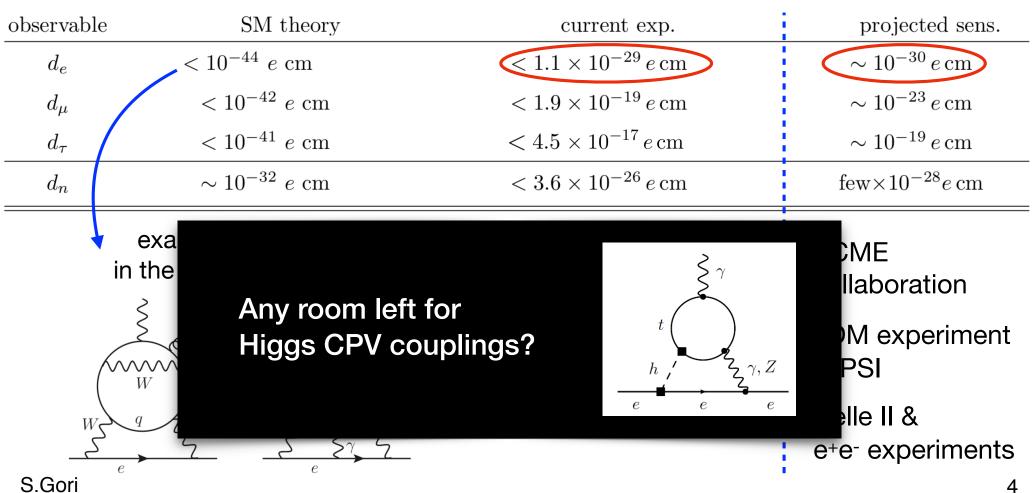
$${\cal L}_{
m eff} = -\sum_f {i d_f \over 2} (ar f \sigma^{\mu
u} \gamma_5 f) F_{\mu
u}$$

from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

observable	SM theory	current exp.	projected sens.
d_e	$< 10^{-44} \ e \ {\rm cm}$	$<1.1\times10^{-29}e{\rm cm}$	$\sim 10^{-30} e \mathrm{cm}$
d_{μ}	$< 10^{-42} \ e \ {\rm cm}$	$<1.9\times10^{-19}e{\rm cm}$	$\sim 10^{-23} e \mathrm{cm}$
$d_{ au}$	$< 10^{-41} \ e \ {\rm cm}$	$< 4.5 \times 10^{-17} e \mathrm{cm}$	$\sim 10^{-19} e \mathrm{cm}$
d_n	$\sim 10^{-32} \ e \ {\rm cm}$	$< 3.6 \times 10^{-26} e {\rm cm}$	$few \times 10^{-28} e cm$

EDMs, experimental status & prospects

$${\cal L}_{
m eff} = -\sum_f {i d_f \over 2} (ar f \sigma^{\mu
u} \gamma_5 f) F_{\mu
u}$$


from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

observable	SM theory	current exp.	projected sens.
d_e	$< 10^{-44} \ e \ {\rm cm}$	$< 1.1 \times 10^{-29} e {\rm cm}$	$\sim 10^{-30} e \mathrm{cm}$
d_{μ}	$< 10^{-42} \ e \ {\rm cm}$	$<1.9\times10^{-19}e{\rm cm}$	$\sim 10^{-23} e \mathrm{cm}$
$d_{ au}$	$< 10^{-41} \ e \ {\rm cm}$	$< 4.5 \times 10^{-17} e \mathrm{cm}$	$\sim 10^{-19} e \mathrm{cm}$
d_n	$\sim 10^{-32} \ e \ {\rm cm}$	$< 3.6 \times 10^{-26} e {\rm cm}$	$few \times 10^{-28} e cm$
in	example diagrams the Standard Model:	d _e : ACME collaboration	ACME collaboration
\bigwedge		d _µ : g-2 collaboration	EDM experiment @ PSI
W S e	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d _τ : Belle collaboration	Belle II & e+e- experiments
S.Gori			4

EDMs, experimental status & prospects

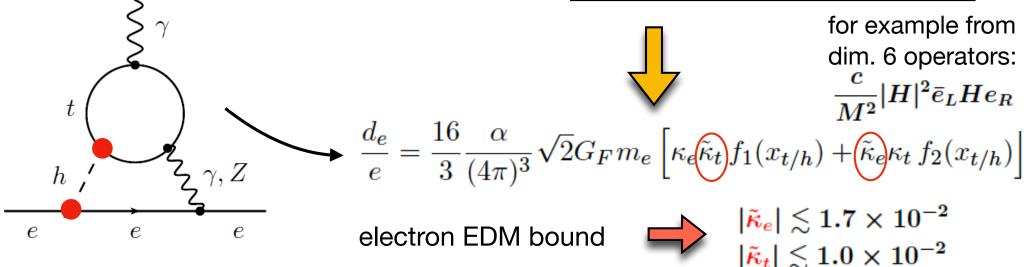
$${\cal L}_{
m eff} = -\sum_f {i d_f \over 2} (ar f \sigma^{\mu
u} \gamma_5 f) F_{\mu
u}$$

from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

Chapter 2:

Indirect probes of Higgs CPV couplings

Electron EDM


- Higgs rate measurements
- Di-boson measurements

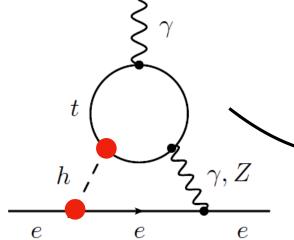
EDMs, naive bounds on Higgs CPV couplings (EFT approach)

If the Higgs has CP violating couplings:

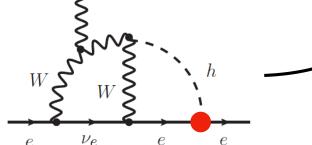
$$\mathcal{L} \supset -\frac{y_f}{\sqrt{2}} \left(\kappa_f \, \bar{f} f + i \kappa_f \, \bar{f} \gamma_5 f \right) h$$

EDMs, naive bounds on Higgs CPV couplings (EFT approach)

If the Higgs has CP violating couplings:


$$\mathcal{L} \supset -\frac{y_f}{\sqrt{2}} \left(\kappa_f \, \bar{f} f + i \kappa_f \, \bar{f} \gamma_5 f \right) h$$

for example from


dim. 6 operators:

 $rac{c}{M^2}|H|^2ar{e}_LHe_R$

 γ/Z

 $\frac{d_e}{\rho} = \frac{16}{3} \frac{\alpha}{(4\pi)^3} \sqrt{2} G_F m_e \left[\kappa_e \tilde{\kappa}_t f_1(x_{t/h}) + \tilde{\kappa}_e \kappa_t f_2(x_{t/h}) \right]$ $egin{aligned} | ilde{\kappa}_e| \lesssim 1.7 imes 10^{-2} \ | ilde{\kappa}_t| \lesssim 1.0 imes 10^{-2} \end{aligned}$ electron EDM bound

For the first time computed in Altmannshofer et al, 1503.04830

Gauge-dependent contributions to the EDM.

To achieve a gauge invariant result, one needs to add diagrams like:

UV-divergent.

Problem of EFT approach

Altmannshofer, SG, Hamer, Patel, 2009.01258

The complex 2HDM

Most general Higgs potential for a 2HDM with a softly broken Z₂ symmetry:

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \frac{1}{2} (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} (\lambda_{5}) \Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.})$$

Only one independent phase

125 GeV
Higgs
$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \mathcal{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ A \end{pmatrix}$$

mass basis used
eigenstates above $\mathcal{R} = \begin{pmatrix} -s_{\alpha}c_{\alpha_2} & c_{\alpha}c_{\alpha_2} & s_{\alpha_2} \\ s_{\alpha}s_{\alpha_2}s_{\alpha_3} - c_{\alpha}c_{\alpha_3} & -s_{\alpha}c_{\alpha_3} - c_{\alpha}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_2}s_{\alpha_3} \\ s_{\alpha}s_{\alpha_2}c_{\alpha_3} + c_{\alpha}s_{\alpha_3} & s_{\alpha}s_{\alpha_3} - c_{\alpha}s_{\alpha_2}c_{\alpha_3} & c_{\alpha_2}c_{\alpha_3} \end{pmatrix}$

The complex 2HDM

Most general Higgs potential for a 2HDM with a softly broken Z₂ symmetry:

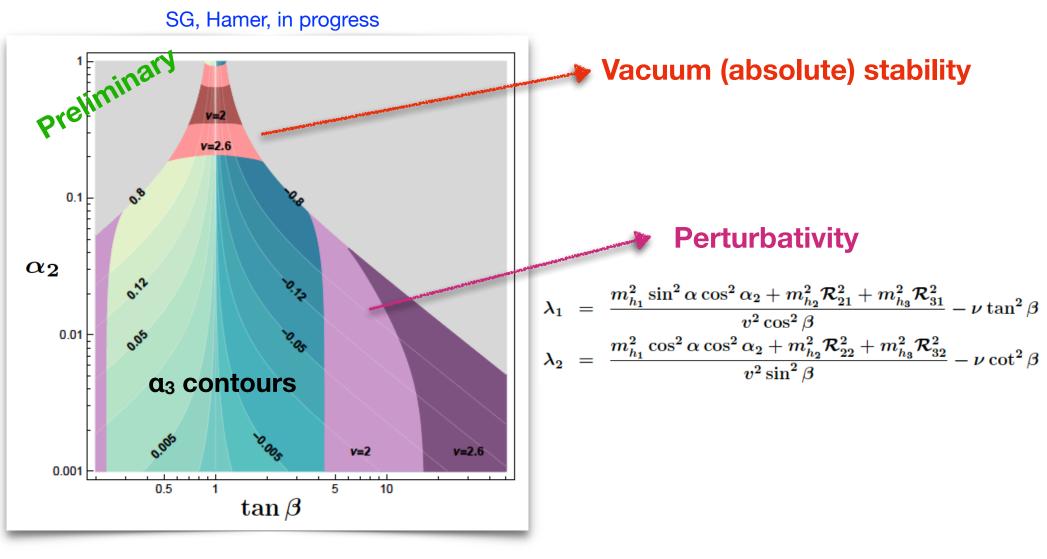
$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \frac{1}{2} (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} (\lambda_{5}) \Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.})$$

Only one independent phase

$$\begin{aligned} \mathsf{Higgs} \stackrel{h_1}{\begin{pmatrix} h_2 \\ h_3 \end{pmatrix}} &= \mathcal{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ A \end{pmatrix} \\ & \text{mass basis used} \\ \text{eigenstates above} \end{aligned} \qquad \mathcal{R} = \begin{pmatrix} -s_\alpha c_{\alpha_2} & c_\alpha c_{\alpha_2} & s_{\alpha_2} \\ s_\alpha s_{\alpha_2} s_{\alpha_3} - c_\alpha c_{\alpha_3} & -s_\alpha c_{\alpha_3} - c_\alpha s_{\alpha_2} s_{\alpha_3} \\ s_\alpha s_{\alpha_2} c_{\alpha_3} + c_\alpha s_{\alpha_3} & s_\alpha s_{\alpha_3} - c_\alpha s_{\alpha_2} c_{\alpha_3} \end{pmatrix} \end{aligned}$$

Set of free parameters (phenomenological):

 $m_{h_1}, m_{h_2}, m_{h_3}, m_{H^{\pm}}, \alpha \text{ (or } x), \alpha_2, \nu, \tan \beta$

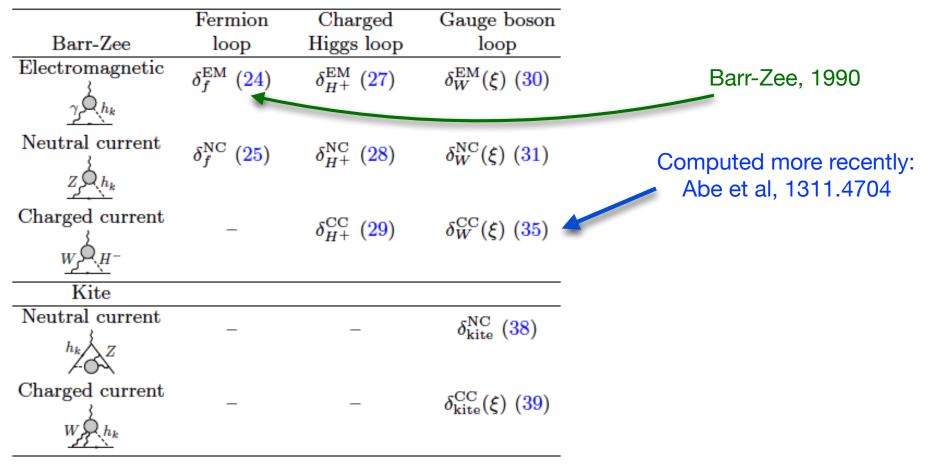

$$u \equiv rac{\operatorname{Re}(m_{12}^2)}{v^2 \sin 2\beta}, \ \ \alpha = \beta - \pi/2 + x$$

 α_3 will be a function of these parameters

125 GaV

Not all parameters are good parameters

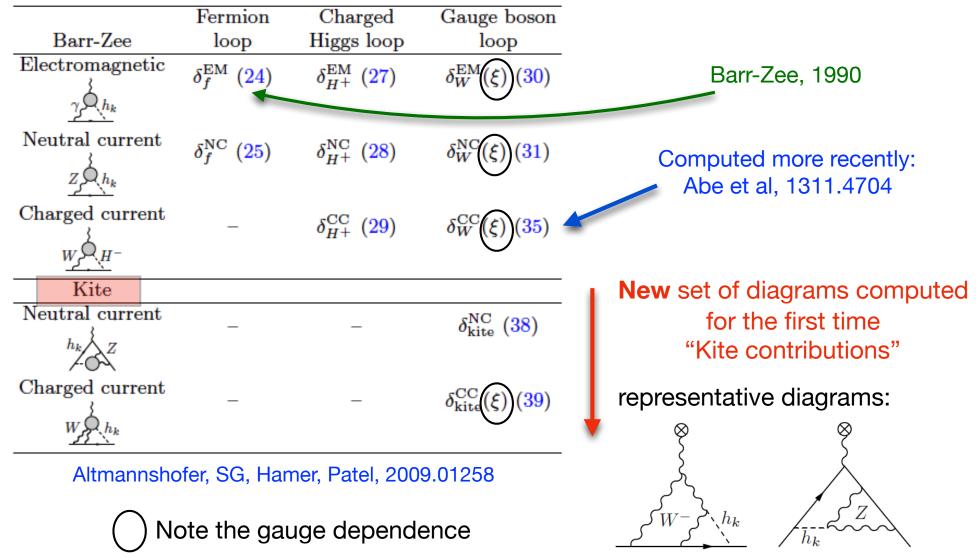
Once the spectrum is fixed, the mixing angles cannot be arbitrary.


S.Gori

$$(m_{h_1}, m_{h_2}, m_{h_3}, m_{H^{\pm}}) = (125, 400, 450, 420) \text{GeV}, \ x = 0$$

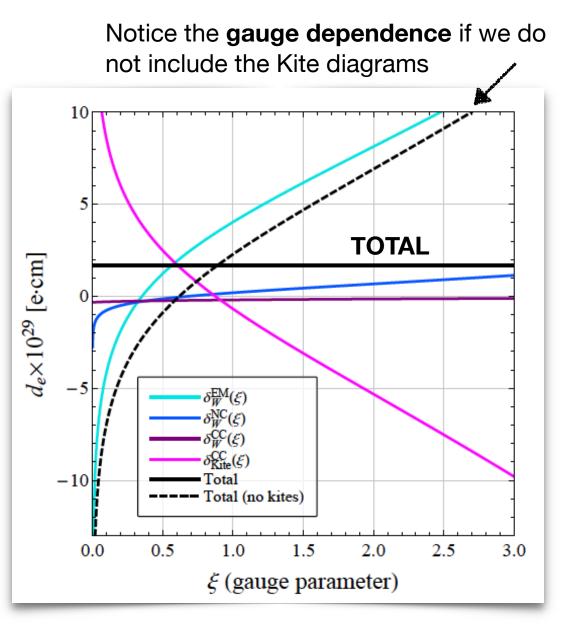
7

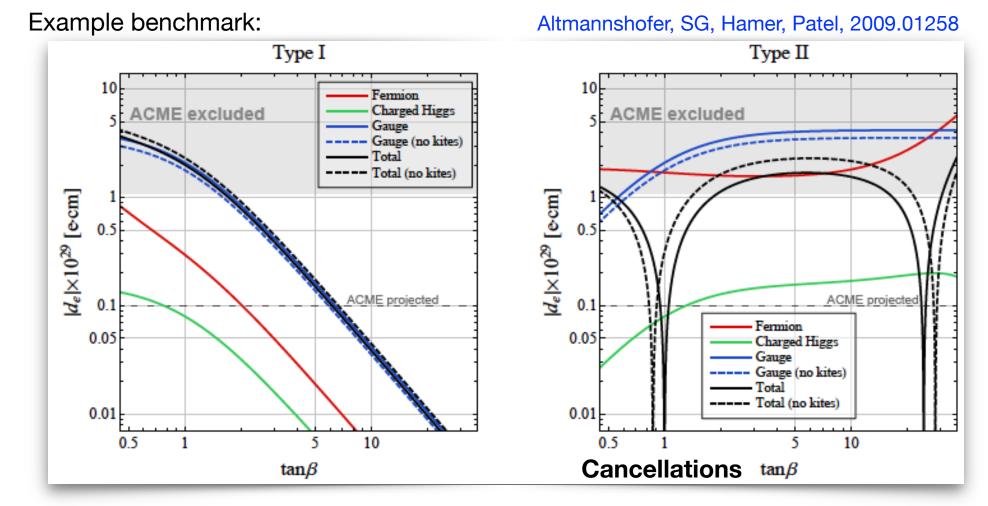
EDMs, a complete 2HDM study


Many contributions to the electron EDM:

Altmannshofer, SG, Hamer, Patel, 2009.01258

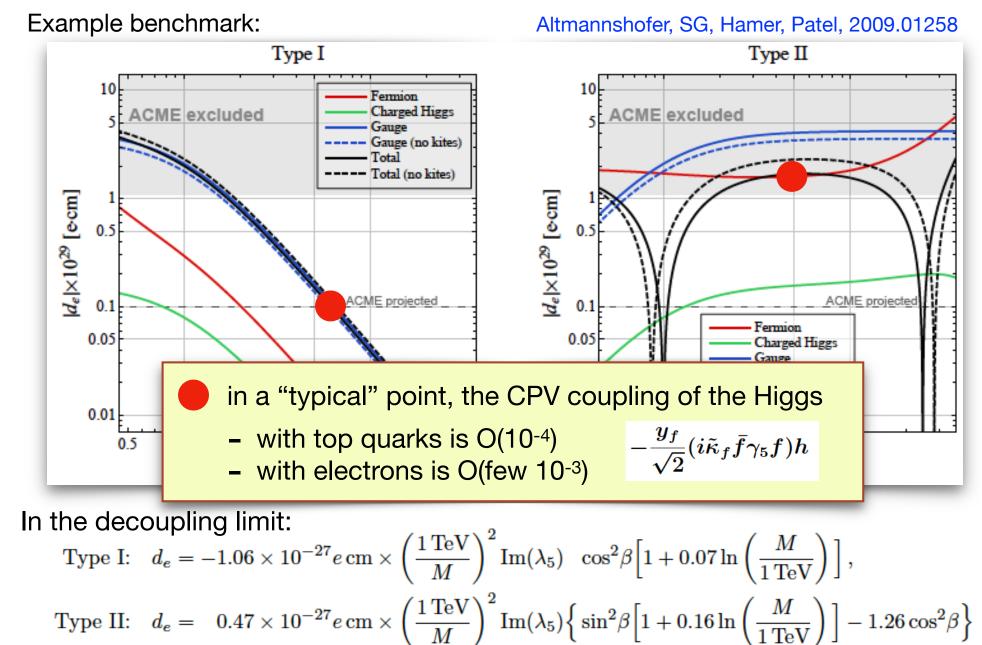
EDMs, a complete 2HDM study


Many contributions to the electron EDM:


EDMs, a complete 2HDM study, gauge dependence

Barr-Zee	Fermion loop	Charged Higgs loop	Gauge boson loop
Electromagnetic γP_{h_k}	δ_f^{EM} (24)	$\delta_{H^+}^{ m EM}$ (27)	$\delta_W^{\rm EM}(\xi)$ (30)
Neutral current $Z \longrightarrow h_k$	$\delta_f^{ m NC}$ (25)	$\delta_{H^+}^{ m NC}$ (28)	$\delta_W^{ m NC}(\xi)$ (31)
Charged current $W {\searrow} H^-$	-	$\delta_{H^+}^{ m CC}$ (29)	$\delta_W^{ m CC}(\xi)$ (35)
Kite			
Neutral current h_k	_	_	$\delta_{ m kite}^{ m NC}$ (38)
Charged current W h_k	_	_	$\delta_{ m kite}^{ m CC}(\xi)$ (39)

Altmannshofer, SG, Hamer, Patel, 2009.01258


EDMs, 2HDM results

In the decoupling limit:

Type I:
$$d_e = -1.06 \times 10^{-27} e \,\mathrm{cm} \times \left(\frac{1\,\mathrm{TeV}}{M}\right)^2 \mathrm{Im}(\lambda_5) \,\cos^2\beta \left[1 + 0.07\ln\left(\frac{M}{1\,\mathrm{TeV}}\right)\right],$$

Type II: $d_e = -0.47 \times 10^{-27} e \,\mathrm{cm} \times \left(\frac{1\,\mathrm{TeV}}{M}\right)^2 \mathrm{Im}(\lambda_5) \left\{\sin^2\beta \left[1 + 0.16\ln\left(\frac{M}{1\,\mathrm{TeV}}\right)\right] - 1.26\cos^2\beta \right\}$
S.Gori

EDMs, 2HDM results

S.Gori

Other indirect probes: Higgs rate measurements (1)

$$\mathcal{L}_{ ext{Yuk}} = -rac{m_{f_i}}{v}(ar{f_i}\kappa_f^{(1)}f_i+iar{f_i}\gamma_5 ilde{\kappa}_f^{(1)}f_i)h_1$$

Free parameters for the Higgs pheno:

 $\alpha_2, x, \tan \beta, \nu$ only mildly entering through the Higgs self-coupling & Higgs coupling to the other Higgs bosons

	Type I	Type II
$\kappa_u^{(1)}$	$c_{lpha_2}c_{lpha}$	$\underline{c_{lpha_2}c_{lpha}}$
	s_{eta}	s_{eta}
$\kappa^{(1)}_{d,\ell}$	$rac{c_{lpha_2}c_lpha}{s_eta}$	$-rac{c_{lpha_2}s_{lpha}}{c_{lpha_2}}$
$ ilde{\kappa}_{u}^{(1)}$	s_{lpha_2}	$egin{array}{c_eta} s_{lpha_2} \end{array}$
	$-\overline{t_eta}$	$-\overline{t_{eta}}$
$ ilde{\kappa}_{d,\ell}^{(1)}$	$\frac{s_{lpha_2}}{\cdot}$	$-s_{lpha_2}t_eta$
, í	t_eta	

Other indirect probes: Higgs rate measurements (1)

$$\mathcal{L}_{ ext{Yuk}} = -rac{m_{f_i}}{v} (ar{f}_i \kappa_f^{(1)} f_i + i ar{f}_i \gamma_5 ilde{\kappa}_f^{(1)} f_i) h_1$$

Free parameters for the Higgs pheno:

 $\alpha_2, x, \tan \beta, \nu$ only mildly entering through the Higgs self-coupling & Higgs coupling to the other Higgs bosons

	Type I	Type II
$\kappa_u^{(1)}$	$c_{lpha_2}c_{lpha}$	$c_{lpha_2}c_{lpha}$
	s_{eta}	s_{eta}
$\kappa^{(1)}_{d,\ell}$	$rac{c_{lpha_2}c_lpha}{s_eta}$	$-rac{c_{lpha_2}s_lpha}{c_eta}$
$ ilde{\kappa}_{u}^{(1)}$	$-\frac{s_{lpha_2}}{2}$	$-\frac{s_{lpha_2}}{2}$
	t_eta	t_eta
$ ilde{\kappa}_{d,\ell}^{(1)}$	$\frac{s_{\alpha_2}}{t}$	$-s_{lpha_2}t_eta$
	t_eta	

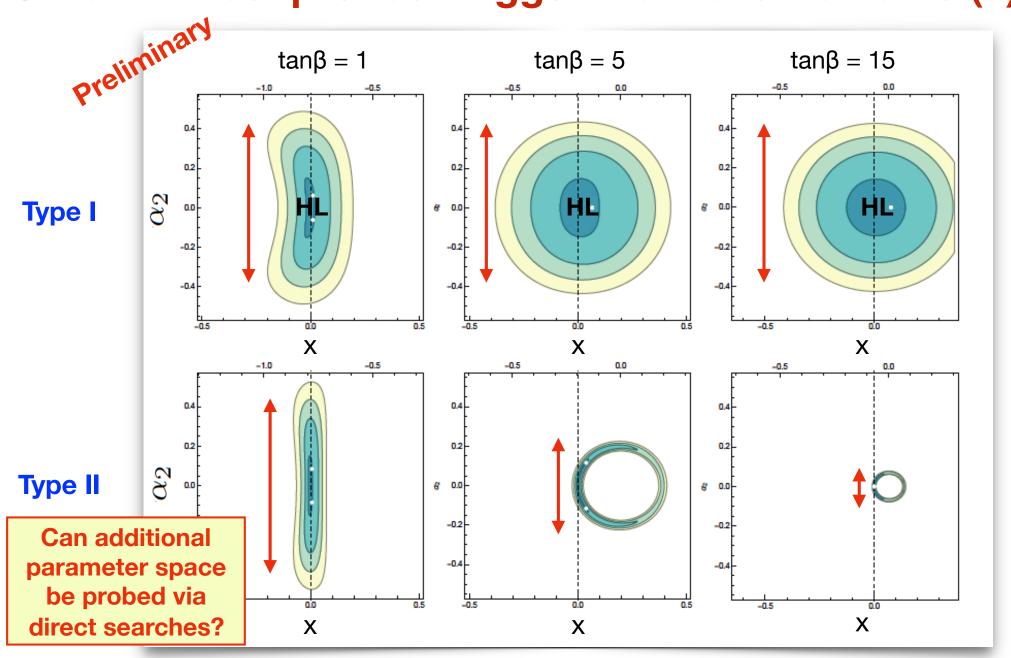
Some rates are easily scaled from the SM predictions:

e.g.
$$\Gamma(h_1 o bar{b}) \simeq \Gamma(h o bar{b})_{
m SM}(|\kappa_d^{(1)}|^2 + | ilde{\kappa}_d^{(1)}|^2)$$

Some other rates are more complicated:

 $\sigma(gg \to h) \simeq \sigma(gg \to h)_{\rm SM} \times$

 $\times (1.1\kappa_t^2 + 3.6 \times 10^{-3}\kappa_b^2 - 0.12\kappa_t\kappa_b + 2.5(\tilde{\kappa}_t^{(1)})^2 + 3.6 \times 10^{-3}(\tilde{\kappa}_b^{(1)})^2 + 0.19\tilde{\kappa}_t^{(1)}\tilde{\kappa}_b^{(1)})$ S.Gori 11

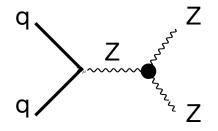

Other indirect probes: Higgs rate measurements (2)

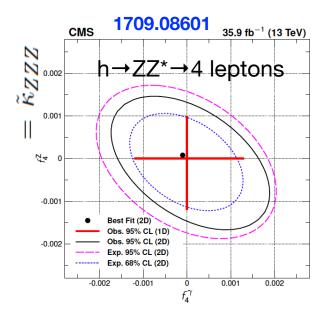
See also Inoue et al, 1403.4257 12

S.Gori

Other indirect probes: Higgs rate measurements (2)

See also Inoue et al, 1403.4257 12

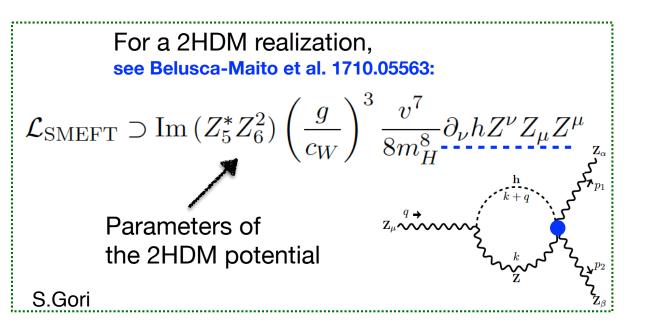

Other indirect probes: di-boson production

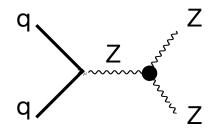

Beyond Higgs measurements, measurements of di-boson production can unveil the existence of new sources of CPV in triple gauge couplings

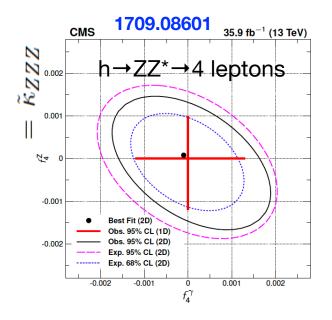
For example:

$$\mathcal{L}_{\text{eff}} \supset \frac{\tilde{\kappa}_{ZZZ}}{m_Z^2} \partial_\mu Z_\nu \partial^\mu Z^\rho \partial_\rho Z^\nu$$

this CPV operator enters eg. the pp \rightarrow ZZ production (together with CP conserving operators)

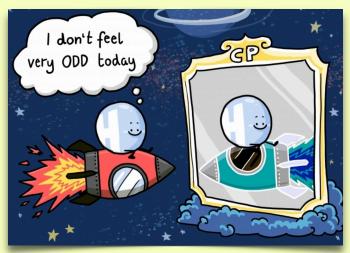

Other indirect probes: di-boson production


Beyond Higgs measurements, measurements of di-boson production can unveil the existence of new sources of CPV in triple gauge couplings

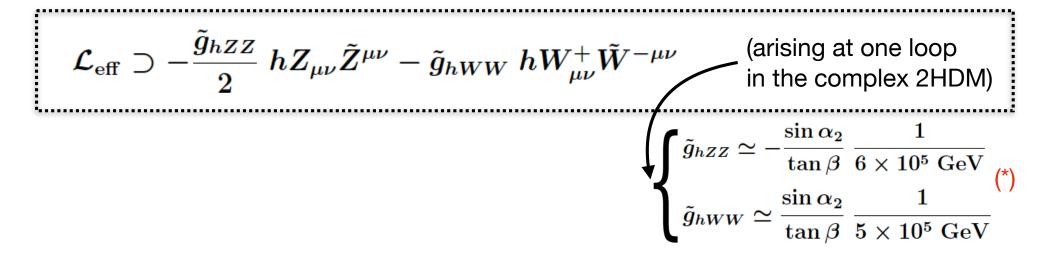

For example:

$$\mathcal{L}_{\text{eff}} \supset \frac{\tilde{\kappa}_{ZZZ}}{m_Z^2} \partial_\mu Z_\nu \partial^\mu Z^\rho \partial_\rho Z^\nu$$

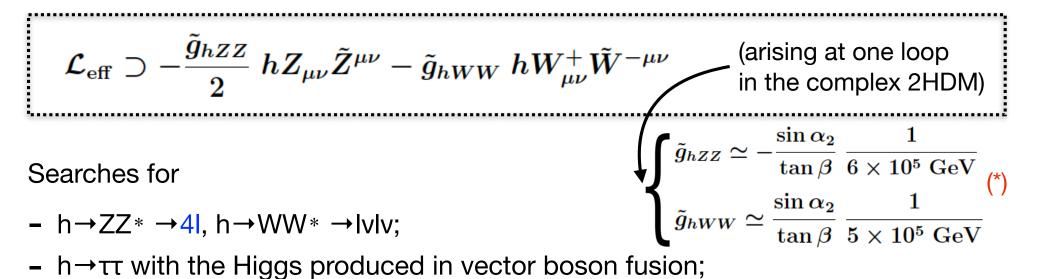
this CPV operator enters eg. the pp \rightarrow ZZ production (together with CP conserving operators)



Chapter 3:

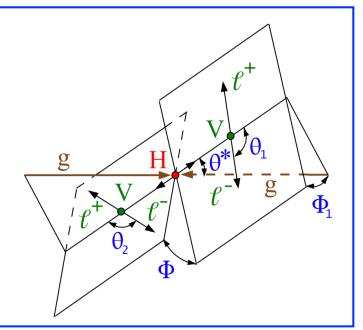

Direct probes of Higgs CPV couplings

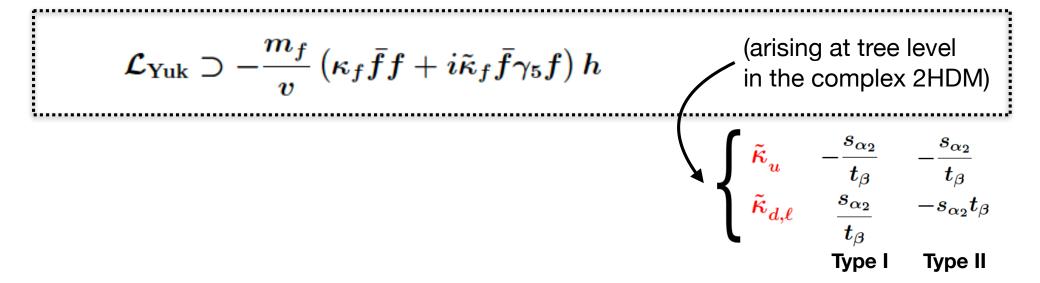
- Higgs distributions
- Signals of CPV from additional Higgs bosons



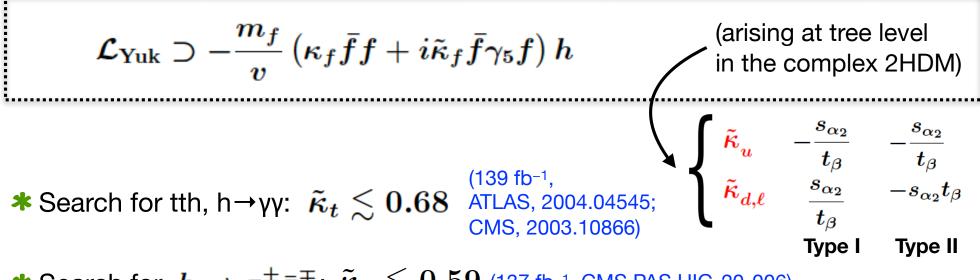
(image: DESY/designdoppel)

Direct searches for Higgs CPV (bosonic)


Direct searches for Higgs CPV (bosonic)


 h → bb with the Higgs produced in association with a vector boson

$$egin{aligned} ilde{g}_{hZZ} \lesssim rac{1}{3 imes 10^3 ~{
m GeV}} & (137 ~{
m fb}^{-1}, ext{ CMS PAS HIG-19-009}) \ ilde{g}_{hZZ} \lesssim rac{1}{8 imes 10^3 ~{
m GeV}} & (ext{HL-LHC}, 1902.00134) \end{aligned}$$


(*) Challenging to probe CPV Higgs mixing angles arising from this minimal 2HDM

Direct searches for Higgs CPV (fermionic)

Direct searches for Higgs CPV (fermionic)

* Search for $h o au^\pmar au^\mp$: $ilde\kappa_ au\lesssim 0.59$ (137 fb-1, CMS PAS HIG-20-006)

ILC, 250 GeV, 2ab⁻¹: angle can be measured with a 4.3° precision

CEPC, 250 GeV, 5ab⁻¹: angle can be measured with a 2.9° precision

Direct searches for Higgs CPV (fermionic)

Additional CPV Higgs coupling probes

An (incomplete) list...

Zγ Farina, Grossman, Robinson [1503.06470] Takes advantage of interference between continuum background and signal from gluon initiated events

Gg Dolan, Harris, Jankowiak, Spannowsky [1406.3322] gg \rightarrow hjj, h \rightarrow T T. Uses associated jets for angular analysis

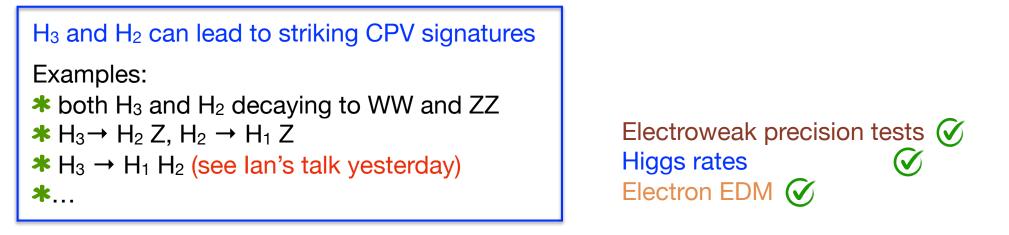
YY Bishara, Grossman, Harnik, Robinson, Shu, Zupan [1312.2955] Requires converted photons and angular resolution on leptonic opening angles

bb, cc ? Galanti, Giammanco, Grossman, Kats, Stamou, Zupan [1505.02771] Can possible overcome QCD wash-out of quark polarization

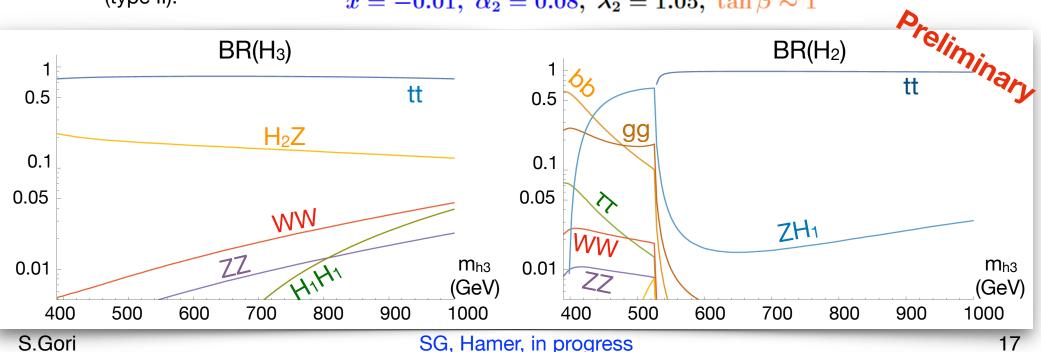
Heavy Higgs pheno. CPV signatures

H₃ and H₂ can lead to striking CPV signatures

Examples:

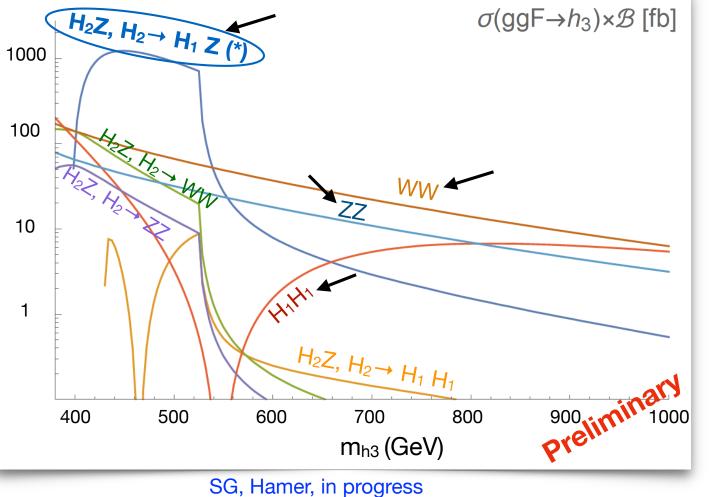

* both H_3 and H_2 decaying to WW and ZZ

***** H₃ → H₂ Z, H₂ → H₁ Z


 $H_3 \rightarrow H_1 H_2$ (see lan's talk yesterday)

*...

Heavy Higgs pheno. CPV signatures



Example benchmark (type II): $egin{aligned} m_{h_2} &= m_{h_3} - 180 \; ext{GeV}, \; m_{H^\pm} = m_{h_3} + 25 \; ext{GeV}, \ x &= -0.01, \; lpha_2 = 0.08, \; \lambda_2 = 1.05, \; ext{tan} \; eta \sim 1 \end{aligned}$

Rates for the heavy Higgs CPV signatures

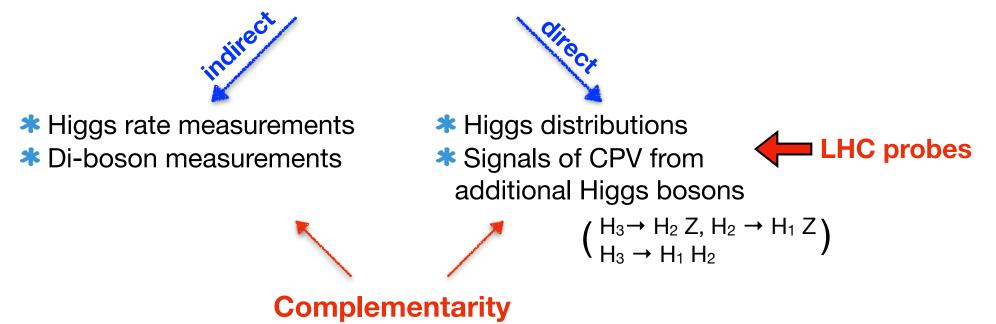
 $egin{aligned} m_{h_2} &= m_{h_3} - 180 \; ext{GeV}, \; m_{H^\pm} = m_{h_3} + 25 \; ext{GeV}, \ x &= -0.01, \; lpha_2 = 0.08, \; \lambda_2 = 1.05, \; ext{tan} \; eta \sim 1 \end{aligned}$

(*) new proposed search → CPV decays

Some part of the parameter space is already probed by direct searches.

For the specific benchmark, the most relevant constraint comes from searches for $pp \rightarrow ttH_{(2)}, H_{(2)} \rightarrow tt$ $m_{H_3} \gtrsim 550 {
m GeV}$

Conclusions and outlook


Testing the CP nature of the Higgs should be a high priority goal for the coming years.

Generically, searches for EDMs set very stringent constraints on CPV Higgs couplings

(image: DESY/designdoppel)

<u>However</u>, there are regions of parameters not probed by EDMs (the example discussed in this talk is the complex 2HDM)

