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Key Ideas for this Talk

• The “electroweak temperature” à a scale 
provided by nature that gives us a clear 
BSM target for colliders

• Robust test of theory requires a new era of 
EFT & non-perturbative computations à
new results highlight this theoretical frontier
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I. Context & Questions



Electroweak Phase Transition

• Higgs discovery ! What was the thermal 
history of EWSB ?

• Baryogenesis ! Was the matter-antimatter 
asymmetry generated in conjunction with 
EWSB (EW baryogenesis) ?

• Gravitational waves ! If a signal observed in 
LISA, could a cosmological phase transition 
be responsible ?
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EWSB Transition: St’d Model
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EWSB Transition: St’d Model
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SM EW: Cross over transition

EW Phase Diagram

How does this picture change 
in presence of new TeV scale 
physics ? What is the phase 
diagram ? SFOEWPT ?
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II. EWPT: A Collider Target

MJRM: 1912.07189



TEW Sets a Scale for Colliders 
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High-T SM Effective Potential

T0 ~  140 GeV

ACFI-T18-17
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.
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FIG. 4: Gluon luminosity ratio

ECM(TeV) M� (GeV) sin ✓ � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 100 NN 135 fb 3 NN
714 NN NN 3 NN

100 100 NN 135 fb 3 NN
714 NN NN 3 NN

14 714 0.01 135 fb 3 NN
100 714 0.01 NN 30 NN

TABLE IV: Single heavy higgs production via ggF.

VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK

VIII. FORMULAE
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
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T
12⇡
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b(�, T ) � m2
b(�)

⇤3/2
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
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12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)

Generate finite-T barrier

Introduce new scalar f
interaction with h via 
the Higgs Portal

h
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
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with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects
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When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

h

Higgs – f0 Mixing

| sin q  | > 0.01 MJRM: 1912.07189



Model Illustrations

15

Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)



Singlets: Precision & Res Di-Higgs Prod

Kotwal, No, R-M, Winslow  1605.06123
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SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies  

SFOEWPT •

h-S Mixing 
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17

III. Theoretical Robustness

• L. Niemi, H. Patel, MRM, T. Tenkanen, D. Weir  1802.10500

• O. Gould, J. Kozaczuk, L. Niemi, MJRM, T.V.I. Tenkanen, D.J. 
Weir: 1903.11604

• L. Niemi, MJRM, T.V.I. Tenkanen, D.J. Weir: 2005.11332
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Models & Phenomenology

Thanks: J. M. No

Models & pheno: how reliable ?
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EWPT & Perturbation Theory

Expansion parameter

SM lattice studies: geff ~ 0.8 in vicinity of 
EWPT for mH ~ 70 GeV

Infrared sensitive 
near phase trans
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Theory Meets Phenomenology

A. Non-perturbative

B. Perturbative

• Most reliable determination of character 
of EWPT & dependence on parameters

• Broad survey of scenarios & parameter 
space not viable

• Most feasible approach to survey broad 
ranges of models, analyze parameter 
space, & predict experimental signatures

• Quantitative reliability needs to be verified 

Benchmark pert theory
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Strategy

• Employ dimensionally-reduced 3D EFT in two regimes:

• Heavy BSM scalars à integrate out and 
“repurpose” existing lattice computations

• Light BSM scalars à perform new lattice 
simulations

• Compare with perturbative computations at 
benchmark parameter points in selected 
models
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High-T EFT: Dimensional Reduction
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Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory
2
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2
T

heavy gT

superheavy ⇡T

Lfull

L3

L3

Integrate out n > 0 modes

Integrate out A0 field

FIG. 1. Scale hierarcy of the finite-T system to which dimen-
sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
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noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
�̄3

ḡ2
3

, y =
µ̄

2
�,3

ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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sional reduction is based.

B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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⌃,3, b4,3, a2,3. In addi-
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters

x =
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, y =
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2
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Lattice simulations exist
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
b̄4,3

4
(⌃a⌃a)2 +
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ

2
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⌃,3, b4,3, a2,3. In addi-

tion, there are additional terms of adjoint/singlet scalars
(induced by temporal components of gauge fields)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
�,3�

†
� + �̄3(�

†
�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

Lattice simulations exist

“Repurpose” lattice results
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form

L (3)
heavy = L (3)

gauge + L (3)
ghost + L (3)

scalar + L (3)
temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄

2
⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
b̄4,3

4
(⌃a⌃a)2 +

ā2,3

2
�
†
�⌃a⌃a

. (3)

Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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ḡ4
3

. (5)

The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form
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where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
�,3, �̄3, µ̄
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⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
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�)2, (4)

where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
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new theory with a macron ḡ3, µ̄
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is

V (�, ⌃) = µ̄
2
�,3�

†
� + µ̄

2
⌃,3⌃

a⌃a + �̄3(�
†
�)2

+
b̄4,3

4
(⌃a⌃a)2 +
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form
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scalar + L (3)
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where the gauge, ghost and scalar parts have the same
form as in 4-d, see appendix ??, but the couplings are de-
noted with subscripts g3, µ
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
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⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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B. Three-dimensional e↵ective theories

In the case of ⌃SM , the e↵ective Lagrangian, in Lan-
dau gauge, has the schematic form
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gauge + L (3)
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temporal + �L (3)

,

(1)
where the gauge, ghost and scalar parts have the same
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
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Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
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the process in detail for the case of triplet portal cou-
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B. Three-dimensional e↵ective theories
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
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the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent

• Assume BSM fields are 
“heavy” or “supeheavy” : 
integrate out

• Effective “SM-like” theory 
parameters are functions of 
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computations for SM-like 
effective theory & matching 
onto full theory to determine 
FOEWPT-viable parameter 
space regions

Lattice simulations exist (e.g., Kajantie et al ’95)
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
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the superheavy field modes. We denote couplings in this
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
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by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†
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3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
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Before turning to results in the case of superheavy or
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matching procedure in more detail.
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As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
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The three-dimensional fields and couplings are related
to their four-dimensional counterparts by matching re-
lations presented in appendix A 2. �L (3) is the renor-
malization counterterm in 3-d and is needed for determi-
nation of lattice counterterms. Note that 3-d gluons and
interaction terms for temporal gluon C0 can be neglected,
see Ref. (singlet paper).

Since the temporal scalars A0, B0 and C0 are heavy, we
may integrate them out, leading to a simpler theory via a
matching procedure in the similar fashion as was done for
the superheavy field modes. We denote couplings in this
new theory with a macron ḡ3, µ̄

2
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⌃,3, b̄4,3, ā2,3, and

the Lagrangian has the same schematic form as above.
This chain of dimensional reduction, by successively in-
tegrating out superheavy and heavy field modes, is illus-
trated in Fig. 1.

In particular, the scalar potential, after integrating out

the A0 and B0 fields, is
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Matching relations for this theory are presented in Ap-
pendix ??. The triplet field is left as a dynamical degree
of freedom in this theory, and it is this e↵ective theory
that will be studied in part II of this study.

However, it is interesting to assume that triplet mass
parameter is superheavy or heavy, and integrate it out
in first or second step of dimensional reduction. In this
case, the resulting 3-d theory has scalar potential of the
form

V (�) = µ̄
2
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� + �̄3(�
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where information about the superheavy and heavy
scales is encapsulated in the 3-d parameters by matching
relations given in Appendices ??.

This e↵ective theory has the same form as the one
derived from Standard Model, studied in [? ], and ex-
isting lattice results can be applied. Properties of the
electroweak phase transition are described by lattice pa-
rameters
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The transition occurs when the y parameter changes sign
and is first-order when x is su�ciently small, 0 < x <

0.11.
Validity of the dimensional reduction can be estimated

by evaluating the omitted dimension-6 operators and es-
timating their e↵ect to a shift caused to vacuum expec-
tation values of the scalars in the e↵ective theory. In the
case of SM, this analysis is presented in Section 5.4 in
Ref. [? ]. In the case of superheavy and heavy triplet, we
can estimate the e↵ect of dimension-6 (�†

�
3)-operator by

comparing magnitude of triplet contributions to that of
top quark, which gives an e↵ect of order one percent in
the pure SM. Coe�cients for these dimension-6 terms are
given in Appendices ??.

Before turning to results in the case of superheavy or
heavy triplet for remainder of this article, we illustrate
matching procedure in more detail.

C. Matching of the parameters

As an illuminating example of how the mapping be-
tween 4-d and 3-d theories is constructed, we describe
the process in detail for the case of triplet portal cou-
pling a2, assuming that the triplet field is light and will
be left as a dynamical variable in the final theory.

The matching relation for a2,3 obtains contributions
from both the h�†

�⌃a⌃ai correlator and the di↵erent
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Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)
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• One-step: Sym phase à Higgs phase
• Two-step: successive EW broken 

phases
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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0 !m2
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.

100 120 140 160 180 200
0.0

0.5

1.0

1.5

2.0

m

b 4

mH 125 GeV, a2 1.07

EW vacuum
unstable

AB

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0
m

b 4

mH 125 GeV 150 GeV,

a2

EW vacuum
unstable

A B

FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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• One-step: thermal loops
• Two-Step 1: thermal loops
• Two-Step 2: tree-level barrier
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Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332 à PRL 2021
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
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of a secondary minimum,
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In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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Real Triplet: Crossover vs 2nd Order 

Niemi, R-M, Tenkanen, Weir 2005.11332 à PRL 2021
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Real Triplet & EWPT: Benchmark PT

Niemi, R-M, Tenkanen, Weir 2005.11332 à PRL 2021

Lattice: Doublet

Lattice: Triplet
2-loop PT: Doublet

2-loop PT: Triplet

Discontinuities: 
First order EWPT

Lattice: Smooth Crossover: 
No phase transition

PT Discontinuities: 
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Gravitational Radiation
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1. Bubbles nucleate and grow
2. Expand in a plasma - create reaction 

fronts
3. Bubbles + fronts collide - violent process
4. Sound waves left behind in plasma
5. Turbulence; damping

Thanks: D. Weir
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IV. Outlook
• Determining the thermal history of EWSB is field 

theoretically interesting in its own right and of practical 
importance for baryogenesis and GW 

• The scale TEW à any new physics that modifies the SM 
crossover transition to a first order transition must live at M 
< 1 TeV and couple with sufficient strength to yield (in 
principle) observable shifts in Higgs boson properties à
EWPT is a clear collider target

• Realizing this opportunity requires a new generation of 
robust theoretical computations, using EFT & non-
perturbative methods, to benchmark perturbative 
calculations
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IV. Outlook

• There are exciting opportunities for talented and ambitious 
theorists to make significant contributions to this growing 
frontier
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First Order EWPT from BSM Physics

• G (h à gg )

• Higgs signal strengths 

• Higgs self-coupling

• Exotic Decays
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First Order EWPT from BSM Physics

• Thermal G (h à gg )

• Higgs signal strengths 

• Higgs self-coupling

• Exotic Decays

• Single f production
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Strong First Order EWPT

• Prevent baryon number washout

• Observable GW 
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Strong First Order EWPT

• Prevent baryon number washout

• Observable GW 
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VI. THE ELECTROWEAK TEMPERATURE REVISITED

VII. OUTLOOK

VIII. FORMULAE
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FIG. 5: Ratio of the gluon luminosity in pp collisions at CM energies 100 TeV to that at 14 TeV as a function of parton CM
energy

p
ŝ.

Table IV, one should bear in mind that the values of | sin ✓| obtained in Refs. [29, 47, 48] are considerably larger than
0.01. The results in these studies were obtained by scanning over the parameters of the potential in Eqs. (7,8,21), and
requiring that the first order EWPT completes (e.g., a su�ciently large tunneling rate) and that the baryon number
preservation criterion be satisfied. Hence, the benchmarks given in Table IV appear to be quite conservative.

ECM(TeV) M� (GeV) � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 7.7 3 23
714 0.63 3 1.9

27 415 26 30 720
714 3 30 90

100 415 183 30 5490
714 29 30 870

TABLE II: Comparison of the LHC, HE-LHC and 100 TeV pp sensitivities to �+�0 electroweak Drell-Yan production for
representative choices of M�. Note that K-factors have not been applied, as discussed in the text.

ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N

340 150 0.01 0.01 5 50
500 150 0.01 0.005 2 10

240 0.01 0.003 2 6
1500 150 0.01 5⇥ 10�4 2.5 1

400 0.01 4⇥ 10�4 2.5 1
700 0.01 2⇥ 10�4 2.5 < 1

3000 150 0.01 1⇥ 10�4 5 < 1
400 0.01 1⇥ 10�4 5 < 1
700 0.01 1⇥ 10�4 5 < 1

TABLE III: Single heavy Higgs production via associated production at prospective e+e� colliders.

Single f production in pp via GF: 14

ECM(TeV) M� (GeV) | sin ✓| � (fb)
R
dtL (ab�1) N ⇥ 10�3

14 415 0.01 1 3 3
714 0.01 0.1 3 0.3

100 415 0.01 59 30 1770
714 0.01 12 30 360

TABLE IV: Comparison of the LHC and 100 TeV pp sensitivities to �0 production via the gluon fusion process, rescaling the
cross sections given in Refs. [29, 47, 48] by the minimum | sin ✓| of Eq. (29) for representative choices of M�.

VI. OTHER CONSIDERATIONS

The foregoing discussion illustrates how dynamics that modify the thermal history of EWSB and lead to a first order
EWPT cannot involve new particles that are arbitrarily heavy or interact too feebly with the SM Higgs boson. The
possible signatures for collider probes generally lie well within the reach of the LHC and/or prospective future colliders
under consideration. The results of detailed studies within specific models are broadly consistent with these simple,
more general arguments. In fact, the requirements on mass and precision reach obtained in model realizations are
generally more optimistic than those appearing above. Thus, we can be fairly confident in our primary conclusion that
TEW sets a concrete, well-defined scale for new dynamics that collider studies may, in principle, probe exhaustively.

That being said, there remain a few other general considerations that one should address on this topic.

• The foregoing arguments rely on the various patterns of symmetry breaking illustrated in Fig. 1, driven by
thermal loops involving the new degrees of freedom and/or tree-level barriers in the tree-level scalar potential
at the renormalizable level. The presence of higher dimensional operators can play a role analogous to the
tree-level barriers discussed above if the associated mass scale is not too heavy with respect to TEW.

• It is conceivable that the new particles associated with a first order EWPT are relatively light compared to
TEW. It is natural, then, to ask about the collider reach for both direct and indirect searches.

• The value of TEW itself may change in the presence of new interactions, and one may wonder about the
corresponding impact on the mass and precision targets discussed above. In particular, contributions from
loops at either T > 0 or T = 0 can lower the transition temperature under certain conditions. These changes in
TEW motivate, in part, the choice of a somewhat larger upper bound on the M� mass range compared to the
values ⇠ 360� 375 obtained from the simple arguments given above.

In what follows, I comment briefly on each of these points.

A. Non-renormalizable Interactions

The lowest-dimension non-renormalizable, gauge-invariant operators that contain only Higgs boson fields enter the
Lagrangian at d = 6. Following Ref. [49], consider the corresponding Higgs potential of the form

Ṽ0(H) = �

✓
H

†
H �

v
2

2

◆2

+
1

⇤2

✓
H

†
H �

v
2

2

◆3

, (38)

where the notation Ṽ0 indicates that the leading order scalar potential is distinct from the potential in Eq. (1). In
both cases, the potential minimum occurs at hH0

i = v/
p
2 and the square of the Higgs boson mass is m2

h
= 2�v2.

Writing Eq. (38) in terms of the field h gives

Ṽ0(h) = Ṽ0 �
µ̃
2

2
h
2 +

�̃

4
h
4 +

1

8⇤2
h
6 (39)

where

µ̃
2 =


��

3v2

4⇤2

�
v
2

, �̃ = ��
3v2

2⇤2
. (40)

For ⇤2
< 3v2/� = 3v4/m2

h
, one has �̃ < 0. The presence of the negative quartic term corresponds to a barrier between

the symmetric and broken phases at T = 0. Given the measured value of mh, one then requires the mass scale ⇤ to
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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III. MODELS

We consider the renormalizable Higgs portal interactions involving H and � for two illustrative cases. We restrict
our attention to � being a complex scalar with Y = 0. The form of the potential for � being a real representation of
SU(2)L with Y = 0 is relatively simple. The corresponding features have been illustrated in previous studies wherein
� is either an SU(2)L singlet or real triplet. Consequently, we focus on complex representations, using the n = 5 and
n = 7 examples, to illustrate the new features not considered in earlier work.

To proceed, we first introduce some notation. It is convenient to consider both � and the associated conjugate �,
whose components are related to those of � as

�j,m = (�1)j�m�⇤
j,�m , (15)

where j refers to the isospin of the scalar multiplet �. As we discuss in Appendix A, � and � transform in the same
way under SU(2)L. The scalar multiplet � of integer isospin can be either real or complex. If � is a real multiplet,
there is a redundancy � = � such that the constraint �j,m = (�1)j�m

�
⇤
j,�m should be fulfilled. For complex multiplet,

each component represents a unique field, and it can be decomposed into two real multiplets as follows

A =
1
p
2

�
�+ �

�
, B =

i
p
2

�
�� �

�
. (16)

It is easy to verify that both A and B fulfill the realness condition A = A and B = B. Therefore a general model
with a complex multiplet � is equivalent to a model of two interacting real multiplets A and B. Notice that a scalar
multiplet � of half integer isospin is always complex since the realness condition � = � can not be fulfilled anymore.
As we note below, under certain assumptions about the model parameters, the complex scalar multiplets may reduce
to a pair of degenerate real multiplets, allowing for a two-component DM scenario. Since the case of the real triplet
and singlet DM as singlet component DM have been analyzed elsewhere, we do not consider higher dimensional real
representations here. Instead, we focus on the complex Y = 0 examples that, in principle, can embody two-component
real multiplet DM scenarios.

Mf < 350 GeV  for 
perturbative a2 , b4
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at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

h

Simple arguments: TEW + 
first order EWPT à
Mf < 700 GeV~

Analogous 
logic



First Order EWPT from BSM Physics

74

7

Veff

T = T

T < T

T > Tc

φ

c

c

tunnel

Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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