

HIGGS BOSON PRODUCTION AT THE LHC

Michael Spira (PSI)

- I Introduction
- II Higgs Boson Decays
- III Higgs Boson Production
- IV Conclusions

• Higgs Boson Production

LHC Higgs XS WG

- Discovery: LHC [Tevatron]
 - → Higgs mass couplings spin

 \mathcal{CP}

 λ ?

<u>MSSM</u>

• 2 Higgs doublets $\xrightarrow{\text{ESB}}$ 5 Higgs bosons: h, H, A, H^{\pm}

- LO: 2 input parameters: M_A , $tg\beta = \frac{v_2}{v_1}$ Haber Carena,... Heinemeyer,... • radiative corrections $\propto m_t^4 \log \frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}$ Zhang $ightarrow \left| M_{h} \, \lesssim \,$ 130 GeV ight|Slavich,... g^{ϕ}_d g_u^{ϕ} g_V^{ϕ} ϕ $-s_lpha/c_eta \ [c_lpha/s_eta]$ h c_{α}/s_{β} $s_{\beta-\alpha}$ 2HDM type II [type I] • modified couplings: H s_{lpha}/s_{eta} c_lpha/c_eta $c_{\beta-\alpha}$ $[s_{\alpha}/s_{\beta}]$ $\mathsf{ctg}eta$ A $\mathsf{tg}\beta$ 0 $[-ctg\beta]$
- Yukawa couplings: $tg\beta\uparrow \Rightarrow g_u^{\phi}\downarrow g_d^{\phi}\uparrow g_V^{\phi}\downarrow$
- LHC: $gg \rightarrow \phi$ dominant for $tg\beta \lesssim 10$ $gg \rightarrow \phi b\overline{b}$ dominant for $tg\beta \gtrsim 10$

$$gg \to b\bar{b}\phi^0, \ gg \to \phi^0 \qquad \phi^0 \to \tau^+ \tau$$

ATLAS: similar results

II HIGGS BOSON DECAYS

Denner, Heinemeyer, Puljak, Rebuzzi, S.

$$\begin{split} \Gamma[H \to b\overline{b}] &= \frac{3G_F M_H}{4\sqrt{2}\pi} \,\overline{m}_b^2(M_H) \,\Delta_{\text{QCD}} \\ \uparrow \\ & \text{log resummation} \to \sim \text{factor } 1/2 \\ & (\text{larger than BSM effects!}) \end{split}$$

 \rightarrow HDECAY

Djouadi, Kalinowski, Mühlleitner, S.

• ATLAS: $\mu_{bb}/\mu_{ZZ} = \Gamma(H \to bb)/\Gamma(H \to ZZ)|_{SM-norm} = 0.87^{+0.28}_{-0.21}$ $\to \overline{m}_b(M_H) = 2.59^{+0.31}_{-0.26}(\text{stat})^{+0.26}_{-0.18}(\text{syst}) \text{ GeV}$

Aparisi, Fuster, Irles, Rodrigo, Vos, Yamamoto, Hoang, Lepenik, S., Tarafune, Yonamine

• MSSM: large SUSY–QCD corrections to $\phi^0 \rightarrow b \overline{b}$

$$\mathcal{L}_{eff} = -\lambda_b \overline{b_R} \left[\phi_1^0 + \frac{\Delta_b}{\lg\beta} \phi_2^{0*} \right] b_L + h.c. \quad \text{valid to all orders in } \Delta_b$$
$$= -m_b \overline{b} \left[1 + i\gamma_5 \frac{G^0}{v} \right] b - \frac{m_b/v}{1 + \Delta_b} \overline{b} \left[g_b^h \left(1 - \frac{\Delta_b}{\lg\alpha \ \lg\beta} \right) h \right] h$$
$$+ g_b^H \left(1 + \Delta_b \frac{\lg\alpha}{\lg\beta} \right) H - g_b^A \left(1 - \frac{\Delta_b}{\lg^2\beta} \right) i\gamma_5 A \right] b$$

Carena, Garcia, Nierste, Wagner Guasch, Häfliger, S.

 \Rightarrow resummed Yukawa couplings \tilde{g}_b^{Φ}

[2HDM: HDECAY, 2HDMC] Djouadi, Kalinowski, Mühlleitner, S. Eriksson, Rathsman, Stal [new: 2HDECAY (+elw)] Krause, Mühlleitner, S. [new: H-COUP (+elw)] Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu

+ charged Higgs decays

III HIGGS BOSON PRODUCTION

(i) $gg \rightarrow h/H/A$

Georgi,...

Gamberini,...

S., Djouadi, Graudenz, Zerwas Dawson, Kauffman

- NLO QCD corrections: $\sim 10 \dots 100\%$
- NNLO calculated for $m_t \gg M_{\phi} \Rightarrow$ further increase by 20–30% [top mass effects small in SM] Anastasiou, Melnikov Ravindran, Smith, van Neerven

Marzani, Ball, Del Duca, Forte, Vicini Harlander, Ozeren Pak, Rogal, Steinhauser

• N³LO for $m_t \gg M_{\phi} \Rightarrow$ scale stabilization scale dependence: $\Delta \lesssim 5\%$ de Elorian, Mazzitelli, Moch, Vogt Ravindran

de Florian, Mazzitelli, Moch, Vogt Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger Ball, Bonvini, Forte, Marzani, Ridolfi • N³LL soft gluon resummation: \lesssim 2%

Catani, de Florian, Grazzini, Nason Ravindran Ahrens, Becher, Neubert, Yang Ball, Bonvini, Forte, Marzani, Ridolfi Bonvini, Marzani Schmidt, S.

• SM + 2HDM elw. corrections: $\sim 5\%$

Aglietti,... Degrassi, Maltoni Actis, Passarino, Sturm, Uccirati Jenniches, Sturm, Uccirati

• QCD corrections to squark loops: 10–100%

Mühlleitner, S. Bonciani, Degrassi, Vicini

• impl. of $gg \rightarrow \phi$ in POWHEG including mass effects @ NLO (QCD also valid for 2HDM and other Higgs extensions)

Bagnaschi, Degrassi, Slavich, Vicini

- SUSY-elw. corrections unknown
- genuine SUSY-QCD corrections: 10–100% Harlander, Steinhauser, Hofmann $[\leftarrow \Delta_b @ \text{ large tg}\beta]$ Harlander, Steinhauser, Hofmann Degrassi, Slavich Anastasiou, Beerli, Daleo Mühlleitner, Rzehak, S.

$$\sigma(gg \to \Phi) = \sigma_{LO}(g_t^{\Phi}, \tilde{g}_b^{\Phi}) \left[1 + \delta_{QCD} + \delta_{SQCD}\right]$$

PRELIMINARY

Fritz, Mühlleitner, Rzehak, S.

(ii)
$$gg \rightarrow HH$$

• threshold region: sensitive to λ large M_{HH} : sensitive to $c_{tt/bb}$ [e.g. boosted Higgs pairs]

$$gg \rightarrow HH$$
 : $\frac{\Delta\sigma}{\sigma} \sim -\frac{\Delta\lambda}{\lambda}$
[decreasing with M_{HH}^2]

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, S.

Borowka, Greiner, Heinrich, Jones, Kerner Schlenk, Schubert, Zirke

 $\sigma_{NLO} = 32.91(10)^{+13.8\%}_{-12.8\%} fb$ $\sigma_{NLO}^{HTL} = 38.75^{+18\%}_{-15\%} fb$ $m_t = 173 \text{ GeV}$ $\Rightarrow -15\% \text{ mass effects on top of LO}$

Baglio, Campanario, Glaus, Mühlleitner, Ronca, S., Streicher

 $32.81(7)^{+13.5\%}_{-12.5\%} fb$ $38.66^{+18\%}_{-15\%} fb$ 172.5 GeV

uncertainties due to m_t

• use m_t , $\overline{m}_t(\overline{m}_t)$ and scan $Q/4 < \mu < Q \rightarrow$ uncertainty = envelope:

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=300 \text{ GeV}} = 0.02978(7)^{+6\%}_{-34\%} \text{ fb/GeV},$$
$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=400 \text{ GeV}} = 0.1609(4)^{+0\%}_{-13\%} \text{ fb/GeV},$$
$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=600 \text{ GeV}} = 0.03204(9)^{+0\%}_{-30\%} \text{ fb/GeV},$$
$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=1200 \text{ GeV}} = 0.000435(4)^{+0\%}_{-35\%} \text{ fb/GeV}$$

• bin-by-bin interpolation:

$$\sigma(gg \to HH) = 32.81^{+4\%}_{-18\%}$$
 fb

• why a dynamical scale $\sim Q?$ large momentum expansion ($\hat{s}=Q^2\gg m_t^2$), two FF:

← Davies, Mishima, Steinhauser, Wellmann

pole mass m_t :

$$\Delta F_{1,mass} \rightarrow \frac{\alpha_s}{\pi} \left\{ 2F_{1,LO} \log \frac{m_t^2}{\hat{s}} + \frac{m_t^2}{\hat{s}} G_1(\hat{s},\hat{t}) \right\},$$

$$\Delta F_{2,mass} \rightarrow \frac{\alpha_s}{\pi} \left\{ 2F_{2,LO} \log \frac{m_t^2}{\hat{s}} + \frac{m_t^2}{\hat{s}} G_2(\hat{s},\hat{t}) \right\}$$

$$\frac{\overline{\text{MS}} \text{ mass } \overline{m}_t(\mu_t):}{\Delta F_{1,mass}} \rightarrow \frac{\alpha_s}{\pi} \left\{ 2F_{1,LO} \left[\log \frac{\mu_t^2}{\widehat{s}} + \frac{4}{3} \right] + \frac{\overline{m}_t^2(\mu_t)}{\widehat{s}} G_1(\widehat{s},\widehat{t}) \right\}, \\ \Delta F_{2,mass} \rightarrow \frac{\alpha_s}{\pi} \left\{ 2F_{2,LO} \left[\log \frac{\mu_t^2}{\widehat{s}} + \frac{4}{3} \right] + \frac{\overline{m}_t^2(\mu_t)}{\widehat{s}} G_2(\widehat{s},\widehat{t}) \right\}$$

 \Rightarrow scale $\mu_t \sim Q$ preferred at large Q

• renormalization/factorization scale uncertainties @ NLO:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 27.73(7)^{+13.8\%}_{-12.8\%} \text{ fb}$$

$$\sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 32.81(7)^{+13.5\%}_{-12.5\%} \text{ fb}$$

$$\sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 127.0(2)^{+11.7\%}_{-10.7\%} \text{ fb}$$

$$\sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1140(2)^{+10.7\%}_{-10.0\%} \text{ fb}$$

• m_t scale/scheme uncertainties @ NLO:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 27.73(7)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 32.81(7)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 127.8(2)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1140(2)^{+3\%}_{-18\%} \text{ fb}$$

• how to combine them? \rightarrow envelope \sim linear sum (rel. err.)

• renormalization/factorization scale uncertainties @ NNLO_{FTapprox}:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 31.05^{+2.2\%}_{-5.0\%} \text{ fb}$$

$$\sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 36.69^{+2.1\%}_{-4.9\%} \text{ fb}$$

$$\sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 139.9^{+1.3\%}_{-3.9\%} \text{ fb}$$

$$\sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1224^{+0.9\%}_{-3.2\%} \text{ fb}$$

- HO corrections: dominated by universal S+V+C corrections
- $\Rightarrow \sim$ rescaling of rel. m_t scale/scheme uncertainties

final combined ren./fac. scale and m_t scale/scheme unc. @ NNLO_{FTapprox}:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 31.05^{+6\%}_{-23\%} \text{ fb}$$

$$\sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 36.69^{+6\%}_{-23\%} \text{ fb}$$

$$\sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 139.9^{+5\%}_{-22\%} \text{ fb}$$

$$\sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1224^{+4\%}_{-21\%} \text{ fb}$$

λ dependence

Baglio, Campanario, Glaus, Mühlleitner, Ronca, S.

• final combined uncertainties @ NNLO_{FTapprox} ($\sqrt{s} = 14$ TeV):

$$\begin{aligned} \kappa_{\lambda} &= -10: \quad \sigma_{tot} = 1680^{+13\%}_{-14\%} \text{ fb} \\ \kappa_{\lambda} &= -5: \quad \sigma_{tot} = 598.9^{+13\%}_{-15\%} \text{ fb} \\ \kappa_{\lambda} &= -1: \quad \sigma_{tot} = 131.9^{+11\%}_{-16\%} \text{ fb} \\ \kappa_{\lambda} &= 0: \quad \sigma_{tot} = 70.38^{+8\%}_{-18\%} \text{ fb} \\ \kappa_{\lambda} &= 1: \quad \sigma_{tot} = 31.05^{+6\%}_{-23\%} \text{ fb} \\ \kappa_{\lambda} &= 2: \quad \sigma_{tot} = 13.81^{+3\%}_{-28\%} \text{ fb} \\ \kappa_{\lambda} &= 2.4: \quad \sigma_{tot} = 13.10^{+6\%}_{-27\%} \text{ fb} \\ \kappa_{\lambda} &= 3: \quad \sigma_{tot} = 18.67^{+12\%}_{-22\%} \text{ fb} \\ \kappa_{\lambda} &= 5: \quad \sigma_{tot} = 94.82^{+18\%}_{-13\%} \text{ fb} \\ \kappa_{\lambda} &= 10: \quad \sigma_{tot} = 672.2^{+16\%}_{-13\%} \text{ fb} \end{aligned}$$

$\mathsf{IV} \ \underline{CONCLUSIONS}$

- Higgs boson searches/studies at LHC belong to major endeavours
- most (SUSY–)QCD and –elw. corrs known $\rightarrow \Delta \lesssim 10-15\%$ @ LHC
- several dedicated HO-tools available for SM, 2HDM, MSSM [NMSSM,...]
- important to develop NLO event generators [← backgrounds]

(vii) $pp \to t\bar{b}H^- + X$

•
$$M_{H^{\pm}} < m_t - m_b$$
: $\sigma_{t\bar{b}H^-} = \sigma_{t\bar{t}} \times BR(\bar{t} \to \bar{b}H^-)$

• $M_{H^{\pm}} \sim m_t - m_b$: new NLO calculation

Degrande, Frederix, Wiesemann, Zaro

• $M_{H^{\pm}} > m_t - m_b$:

NLO

exact $g \to b \overline{b}$ splitting & mass/off-shell effects no resummation of log $M_{H^\pm}^2/m_b^2$ terms

 \rightarrow Santander matching

massless/on-shell *b*'s, no p_{Tb} resummation of log $M_{H^{\pm}}^2/m_b^2$ terms

NLO

Dittmaier, Krämer, S., Walser Plehn Flechl, Klees, Krämer, Spira, Ubiali

Degrande, Frederix, Wiesemann, Zaro

• charged Higgs:
$$\tilde{g}_b^{H^{\pm}} = \frac{\mathrm{tg}\beta}{1+\Delta_b} \left(1 - \frac{\Delta_b}{\mathrm{tg}^2\beta}\right)$$

$$\sigma_{NLO} = \sigma_{LO}|_{g_b^{H^{\pm}} \to \tilde{g}_b^{H^{\pm}}} \times \left\{ 1 + \delta_{QCD} + \delta_{SQCD}^{rem} \right\}$$

tgβ	δ^{rem}_{SUSY} [%]	
3	-5.7%	$\sim H^{\pm}$
5	-7.9%	$\leftarrow g_t$
10	-4.8%	
30	-0.13%	

Dittmaier, Krämer, S., Walser

uncertainties due to m_t for single Higgs

• transform $m_t \to \overline{m}_t(\mu)$ (\overline{MS})

 \rightarrow modification of mass CT

• use m_t , $\overline{m}_t(\overline{m}_t)$ and scan $Q/4 < \mu < Q \rightarrow$ uncertainty = envelope:

 $\begin{aligned} \sigma(gg \to H)|_{M_H = 125 \text{ GeV}} &= 42.17^{+0.4\%}_{-0.5\%} \text{ pb} \\ \sigma(gg \to H)|_{M_H = 300 \text{ GeV}} &= 9.85^{+7.5\%}_{-0.3\%} \text{ pb} \\ \sigma(gg \to H)|_{M_H = 400 \text{ GeV}} &= 9.43^{+0.1\%}_{-0.9\%} \text{ pb} \\ \sigma(gg \to H)|_{M_H = 600 \text{ GeV}} &= 1.97^{+0.0\%}_{-15.9\%} \text{ pb} \\ \sigma(gg \to H)|_{M_H = 900 \text{ GeV}} &= 0.230^{+0.0\%}_{-22.3\%} \text{ pb} \\ \sigma(gg \to H)|_{M_H = 1200 \text{ GeV}} &= 0.0402^{+0.0\%}_{-26.0\%} \text{ pb} \end{aligned}$

SUSY-QCD Corrections to $b\bar{b}\phi^0$

$$[\Delta \lesssim 1\%]$$

$$\begin{aligned} \mathcal{L}_{eff} &= -\lambda_b \overline{b_R} \left[\phi_1^0 + \frac{\Delta_b}{\mathrm{tg}\beta} \phi_2^{0*} \right] b_L + h.c. \quad \text{valid to all orders in } \Delta_b \\ &= -m_b \overline{b} \left[1 + i\gamma_5 \frac{G^0}{v} \right] b - \frac{m_b/v}{1 + \Delta_b} \overline{b} \left[g_b^h \left(1 - \frac{\Delta_b}{\mathrm{tg}\alpha} \, \mathrm{tg}\beta} \right) h \right. \\ &+ g_b^H \left(1 + \Delta_b \frac{\mathrm{tg}\alpha}{\mathrm{tg}\beta} \right) H - g_b^A \left(1 - \frac{\Delta_b}{\mathrm{tg}^2\beta} \right) i\gamma_5 A \right] b \end{aligned}$$

$$\Delta_{b} = \Delta_{b}^{QCD(1)} + \Delta_{b}^{elw(1)}$$

$$\Delta_{b}^{QCD(1)} = \frac{2}{3} \frac{\alpha_{s}(\mu_{R})}{\pi} M_{\tilde{g}} \mu \, \mathrm{tg}\beta \, I(m_{\tilde{b}_{1}}^{2}, m_{\tilde{b}_{2}}^{2}, M_{\tilde{g}}^{2}$$

$$\Delta_{b}^{elw(1)} = \frac{\lambda_{t}^{2}(\mu_{R})}{(4\pi)^{2}} \mu \, A_{t} \, \mathrm{tg}\beta \, I(m_{\tilde{t}_{1}}^{2}, m_{\tilde{t}_{2}}^{2}, \mu^{2})$$

$$I(a, b, c) = -\frac{ab \log \frac{a}{b} + bc \log \frac{b}{c} + ca \log \frac{c}{a}}{(a - b)(b - c)(c - a)}$$

 \Rightarrow resummed Yukawa couplings \tilde{g}_b^{Φ}

Carena, Garcia, Nierste, Wagner Guasch, Häfliger, S.

• QCD corrections to squark loops:

Mühlleitner, S.

• Santander matching

minimum: tg
$$eta \sim \sqrt{rac{m_t}{\overline{m}_b}} \sim$$
 8

Dittmaier, Krämer, S., Walser Plehn Flechl, Klees, Krämer, Spira, Ubiali

$$\begin{array}{rcl} {\rm tg}\beta &=& 30 \\ \mu &=& 495.6 \,\, {\rm GeV} \\ A_t &=& -729.3 \,\, {\rm GeV} \\ A_b &=& -987.4 \,\, {\rm GeV} \\ m_{\tilde{g}} &=& 916.1 \,\, {\rm GeV} \\ m_{\tilde{q}_L} &=& 762.5 \,\, {\rm GeV} \\ m_{\tilde{b}_R} &=& 780.3 \,\, {\rm GeV} \\ m_{\tilde{t}_R} &=& 670.7 \,\, {\rm GeV} \end{array}$$

 $\longrightarrow m_{\tilde{t}_1} = \text{631.8 GeV}, m_{\tilde{t}_2} = \text{829.1 GeV}, m_{\tilde{b}_1} = \text{721.8 GeV}, m_{\tilde{b}_2} = \text{820.7 GeV}$

$$\begin{array}{rcl} {\rm tg}\beta \ = \ 5 \\ \mu \ = \ 639.8 \ {\rm GeV} \\ A_t \ = \ -1671.4 \ {\rm GeV} \\ A_b \ = \ -905.6 \ {\rm GeV} \\ m_{\tilde{g}} \ = \ 710.3 \ {\rm GeV} \\ m_{\tilde{q}_L} \ = \ 535.2 \ {\rm GeV} \\ m_{\tilde{b}_R} \ = \ 620.5 \ {\rm GeV} \\ m_{\tilde{t}_R} \ = \ 360.5 \ {\rm GeV} \end{array}$$

 $\longrightarrow m_{\tilde{t}_1} = \text{204.1 GeV}, m_{\tilde{t}_2} = \text{656.1 GeV}, m_{\tilde{b}_1} = \text{533.3 GeV}, m_{\tilde{b}_2} = \text{625.2 GeV}$

(ii) W/Z fusion: $pp \rightarrow W^*W^*/Z^*Z^* \rightarrow h/H$

• QCD corrections \leftarrow DIS: $\sim 10\%$

[approx] 2–loop: $\lesssim 1\%$ [approx] 3–loop: $\lesssim 0.3\%$

- elw. corrections: $\sim 10\%$
- genuine SUSY-QCD corrections small
- genuine SUSY-elw. corrections: $\lesssim 5\%$ [implemented in VBFNLO]

Cahn, Dawson Hikasa Atarelli, Mele, Pitolli

Han, Valencia, Willenbrock Figy, Oleari, Zeppenfeld Berger, Campbell

Bolzano, Maltoni, Moch, Zaro Cacciari, Dreyer, Karlberg, Salam, Zanderighi

Dreyer, Karlberg

Ciccolini, Denner, Dittmaier

Djouadi, S.

Hollik, Rzehak, Plehn, Rauch Figy, Palmer, Weiglein (iii) Higgs-strahlung: $pp \rightarrow W^*/Z^* \rightarrow W/Z + h/H$

Glashow,... Kunszt,...

- QCD corrections \leftarrow DY: $\sim 30\%$ 2–loop: $\lesssim 5\%$
- SUSY-QCD corrections small
- \bullet electroweak corrections: $\sim -10\%$
- W/Z + H: fully exclusive @ NNLO QCD

Han, Willenbrock

Brein, Djouadi, Harlander

Djouadi, S.

Ciccolini, Dittmaier, Krämer

Ferrera, Grazzini, Tramantano

dominant

• $t\bar{t}h \rightarrow t\bar{t}b\bar{b}$ important @ LHC \rightarrow top Yukawa cplg.

- QCD corrections [SM]: ~ 20% Beenakker, Dittmaier, Krämer, Plümper, S., Zerwas [threshold suppressed: $\sigma_{LO} \sim \beta^4$] Dawson, Orr, Reina, Wackeroth Broggio, Ferroglia, Pecjak, Signer, Yang
- SUSY-QCD corrections: moderate Dittmaier, Häfliger, Krämer, S., Walser
- link to parton showers: aMC@NLO, PowHel Frederix et al. Garzelli, Kardos, Papadopoulos, Trócsányi
- important work on backgrounds ttbb, ttjj, etc.
 Bredenstein, Denner, Dittmaier, Pozzorini
 Bevilacqua, Czakon, Papadopoulos, Pittau, Worek
 Cascioli, Maierhofer, Pozzorini

Dittmaier, Häfliger, Krämer, S., Walser

(v) $b\bar{b}$ +Higgs production

NLO

exact $g \to b \overline{b}$ splitting & mass/off-shell effects no resummation of $\log M_H^2/m_b^2$ terms

NNLO

massless/on-shell *b*'s, no p_{Tb} resummation of log M_H^2/m_b^2 terms

Bonvini, Papanastasiou, Tackmann

Forte, Napoletano, Ubiali

matching

	M_A	M_H [GeV]	δ^A_{QCD}	δ^A_{SUSY}	$\delta^A_{SUSYrem}$	δ^{H}_{QCD}	δ^{H}_{SUSY}	$\delta^{H}_{SUSYrem}$
7 TeV	100	113.9	0.23	-0.30	$0.4 imes10^{-4}$	0.27	-0.38	$0.3 imes10^{-4}$
	200	200	0.38	-0.30	$2.9 imes10^{-4}$	0.39	-0.30	$5.8 imes10^{-4}$
	300	300	0.46	-0.30	$6.7 imes10^{-4}$	0.47	-0.30	$9.3 imes10^{-4}$
	400	400	0.53	-0.30	$1.3 imes10^{-3}$	0.53	-0.30	$1.5 imes10^{-3}$
	500	500	0.57	-0.30	$2.0 imes10^{-3}$	0.59	-0.30	$2.2 imes10^{-3}$
14 TeV	100	113.9	0.14	-0.30	$0.4 imes 10^{-4}$	0.17	-0.38	$0.5 imes10^{-4}$
	200	200	0.28	-0.30	$2.7 imes10^{-4}$	0.29	-0.30	$5.7 imes10^{-4}$
	300	300	0.37	-0.30	$6.5 imes10^{-4}$	0.39	-0.30	$9.3 imes10^{-4}$
	400	400	0.45	-0.30	$1.2 imes10^{-3}$	0.45	-0.30	$1.5 imes10^{-3}$
	500	500	0.50	-0.30	$2.1 imes10^{-3}$	0.49	-0.30	$2.3 imes10^{-3}$

	$tg\beta$	M_A	M_H [GeV]	δ^A_{SUSY}	$\delta^A_{SUSYrem}$	δ^{H}_{SUSY}	$\delta^{H}_{SUSYrem}$
	3	200	209.7	-0.04	$2.1 imes 10^{-4}$	-0.04	$5.7 imes 10^{-4}$
	5	200	204.0	-0.06	$2.4 imes10^{-4}$	-0.06	$5.3 imes10^{-4}$
	7	200	202.1	-0.08	$2.5 imes10^{-4}$	-0.09	$3.9 imes10^{-4}$
7 TeV	10	200	200.9	-0.12	$2.5 imes10^{-4}$	-0.12	$3.8 imes10^{-4}$
	20	200	200.1	-0.21	$2.6 imes10^{-4}$	-0.21	$4.4 imes10^{-4}$
	30	200	200.0	-0.30	$2.9 imes10^{-4}$	-0.30	$5.8 imes10^{-4}$
	3	200	209.7	-0.04	$2.0 imes 10^{-4}$	-0.04	$7.2 imes 10^{-4}$
	5	200	204.0	-0.06	$2.2 imes10^{-4}$	-0.06	$5.0 imes10^{-4}$
	7	200	202.1	-0.08	$2.4 imes10^{-4}$	-0.09	$4.4 imes10^{-4}$
14 TeV	10	200	200.9	-0.12	$2.5 imes10^{-4}$	-0.12	$4.1 imes10^{-4}$
	20	200	200.1	-0.21	$2.7 imes10^{-4}$	-0.21	$4.4 imes10^{-4}$
	30	200	200.0	-0.30	$2.7 imes10^{-4}$	-0.30	$5.7 imes10^{-4}$

SPS1b

Dittmaier, Häfliger, Krämer, S., Walser

 \bullet third generation dominant $\rightarrow t, b$

- 3 • 2-loop QCD corrections: 2.75 $\sigma = \sigma_0 + \frac{\sigma_1}{m_t^2} + \dots + \frac{\sigma_4}{m_t^8}$ 2.5 ₩ 2.25 Grigo, Hoff, Melnikov, Steinhauser 2 NLO mass effects @ NLO in +10%1.75 real corrections: $\sim -10\%$ 1.5 └__ 300 Frederix, Frixione, Hirschi, Maltoni, Mattelaer, $\sqrt{s_{cut}} \frac{500}{(GeV)}$ 400 600 700 Torrielli, Vrvonidou, Zaro \rightarrow sizeable virtual mass effects • NNLO QCD corrections: $\sim 20\%$ 0.20 $[M_H^2 \ll 4m_t^2]$ NNLO $d\sigma/dQ(fb/GeV)$ de Florian, Mazzitelli NLO 0.15 ---- LO Grigo, Melnikov, Steinhauser 0.10 0.05 0.00 300 400 500 600 700 Q(GeV)
- soft gluon resummation: $\sim 10\%$ $[M_H^2 \ll 4m_t^2]$

Shao, Li, Li, Wang de Florian, Mazzitelli uncertainties due to m_t

• transform $m_t \to \overline{m}_t(\mu)$ (\overline{MS})

 \rightarrow modification of mass CT

• use m_t , $\overline{m}_t(\overline{m}_t)$ and scan $Q/4 < \mu < Q \rightarrow$ uncertainty = envelope:

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=300 \text{ GeV}} = 0.0298(7)^{+6\%}_{-34\%} \text{ fb/GeV},$$

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=400 \text{ GeV}} = 0.1609(4)^{+0\%}_{-13\%} \text{ fb/GeV},$$

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=600 \text{ GeV}} = 0.03204(9)^{+0\%}_{-30\%} \text{ fb/GeV},$$

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=1200 \text{ GeV}} = 0.000435(4)^{+0\%}_{-35\%} \text{ fb/GeV},$$

• preliminary interpolation:

$$\sigma(gg \rightarrow HH) = 32.78^{+4\%}_{-17\%}$$
 fb (preliminary)

NNLO Monte Carlo:

Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli

• 20% effects beyond NLO

• m_t scale/scheme uncertainties @ NLO:

$$\begin{aligned} \kappa_{\lambda} &= -10: \quad \sigma_{tot} = 1438(1)^{+10\%}_{-6\%} \text{ fb} \\ \kappa_{\lambda} &= -5: \quad \sigma_{tot} = 512.8(3)^{+10\%}_{-7\%} \text{ fb} \\ \kappa_{\lambda} &= -1: \quad \sigma_{tot} = 113.66(7)^{+8\%}_{-9\%} \text{ fb} \\ \kappa_{\lambda} &= 0: \quad \sigma_{tot} = 61.22(6)^{+6\%}_{-12\%} \text{ fb} \\ \kappa_{\lambda} &= 1: \quad \sigma_{tot} = 27.73(7)^{+4\%}_{-18\%} \text{ fb} \\ \kappa_{\lambda} &= 2: \quad \sigma_{tot} = 13.2(1)^{+1\%}_{-23\%} \text{ fb} \\ \kappa_{\lambda} &= 3: \quad \sigma_{tot} = 12.7(1)^{+9\%}_{-22\%} \text{ fb} \\ \kappa_{\lambda} &= 5: \quad \sigma_{tot} = 83.2(3)^{+13\%}_{-4\%} \text{ fb} \\ \kappa_{\lambda} &= 10: \quad \sigma_{tot} = 579(1)^{+12\%}_{-4\%} \text{ fb} \end{aligned}$$

• renormalization/factorization scale uncertainties @ NNLO_{FTapprox}:

$$\begin{aligned} \kappa_{\lambda} &= -10: \quad \sigma_{tot} = 1680^{+3.0\%}_{-7.7\%} \text{ fb} \\ \kappa_{\lambda} &= -5: \quad \sigma_{tot} = 598.9^{+2.7\%}_{-7.5\%} \text{ fb} \\ \kappa_{\lambda} &= -1: \quad \sigma_{tot} = 131.9^{+2.5\%}_{-6.7\%} \text{ fb} \\ \kappa_{\lambda} &= 0: \quad \sigma_{tot} = 70.38^{+2.4\%}_{-6.1\%} \text{ fb} \\ \kappa_{\lambda} &= 1: \quad \sigma_{tot} = 31.05^{+2.2\%}_{-5.0\%} \text{ fb} \\ \kappa_{\lambda} &= 2: \quad \sigma_{tot} = 13.81^{+2.1\%}_{-4.9\%} \text{ fb} \\ \kappa_{\lambda} &= 2.4: \quad \sigma_{tot} = 13.10^{+2.3\%}_{-5.1\%} \text{ fb} \\ \kappa_{\lambda} &= 3: \quad \sigma_{tot} = 18.67^{+2.7\%}_{-7.3\%} \text{ fb} \\ \kappa_{\lambda} &= 5: \quad \sigma_{tot} = 94.82^{+4.9\%}_{-8.8\%} \text{ fb} \\ \kappa_{\lambda} &= 10: \quad \sigma_{tot} = 672.2^{+4.2\%}_{-8.5\%} \text{ fb} \end{aligned}$$