atest CMS Higgs results and prospects on behalf of the CMS Collaboration

Andrey Korytov (UF)

Higgs as a Probe of New Physics, 25-27 Mar 2021

Outline

Higgs boson mass – the only free parameter (assuming SM): measure it

Look for deviations in H125 boson properties from the SM predictions

Non-SM like structures in production and decay amplitudes: spin-parity, mixed states, compositeness Rates in different production and decay modes: test of couplings to SM particles Natural width: can provide an indirect sign for presence of abnormal decay modes

Look for explicitly abnormal production and decay modes of H125 boson

Decays: $H \rightarrow \ell \ell'$ (CLFV), $H \rightarrow XX$, $H \rightarrow invisible$ **Production:** $t \rightarrow cH$ (FCNC), HH (at abnormal rate, resonant or not)

In a 20-min talk, I have no choice but show only a few hand-picked results **Look for other scalars** (inspired by various models with extended scalar sectors)

SM + Real Singlet: H125, H

SM + HD (2HDM, including MSSM): H125, H, A, H[±]

SM + HD + Complex Singlet (nMSSM): H125, H, A, H[±], h, a

SM + Triplet: H125, H, A, H[±], H^{±±}

Higgs boson mass

Higgs mass – the only free parameter in the Higgs sector (assuming SM)

all other parameters are set by the known masses of W and Z bosons, and fermions

Workhorse channels are:

 ${\rm H} \rightarrow {\rm ZZ} \rightarrow 4\ell$ and ${\rm H} \rightarrow \gamma\gamma$

Statistical power is very similar

Emerging challenge in $H \rightarrow \gamma \gamma$: systematics ~ stat error

Run 1 + 2016 results: 15 Feb 2020, PLB 805 (2020) 135425 125.38 ± 0.14 GeV (~0.1% !)

Run 1 + Run 2:

expect precision better than 100 MeV

HL-LHC:

Statistical uncertainty ~10 MeV The game will be all about controlling syst. uncertainties

Looking for deviations in SM-like properties

Established decay modes

Established production modes

Intermediate Run 2 combination 9 Jan 2020, HIG-19-005 [mix]

- $H \rightarrow \gamma \gamma, \ H \rightarrow ZZ, \ H \rightarrow WW, \ H \rightarrow \tau \tau, \ H \rightarrow bb, \ H \rightarrow \mu \mu$
- $ttH (H \rightarrow WW/ZZ/\tau\tau) \rightarrow leptons$

$ttH, H \rightarrow \gamma\gamma$

25 Mar 2020, PRL 125 (2020) 061801 [Run 2]

- Significance 6.6
- $\mu = 1.13 \pm 0.10$

ttH, *ttH* ($H \rightarrow WW/ZZ/\tau\tau$) \rightarrow *leptons*

7 Nov 2020, HIG-19-008 [Run 2]

- Significance 4.7
- $-\mu = 0.92 \pm 0.24$

Higgs as a Probe of New Physics, Osaka University, Japan (25-27 Mar 2021)

Fit for couplings modifiers

Event rate for
$$ii \to H \to ff$$
: $\sigma_i \mathcal{B}^f = \frac{\sigma_i(\vec{\kappa})\Gamma^f(\vec{\kappa})}{\Gamma_H(\vec{\kappa})}$

Fit for six Higgs coupling modifiers: κ_{W} , κ_{Z} , κ_{t} , κ_{b} , κ_{τ} , κ_{μ} Assuming:

- no "new physics" in loop-driven couplings $(H \rightarrow \gamma \gamma, gg \rightarrow H)$
- no BSM decays (invisible, not observed)
- couplings to the 1st/2nd–gen. quarks and electrons are SM-like (i.e., small and hence having a negligible effect on the fit)

Impressive agreement with SM over three orders of magnitude of couplings (note: ±5% for ttH coupling)

Are H125's quantum J^{CP} numbers 0⁺⁺, as predicted by the SM ?

INTRO: Higgs bosonic (V) coupling structure

General Lagrangian for HVV interactions up to dim-5 operators:

$$L = -\frac{a_1}{2\nu} m_V^2 H V_{\mu} V^{\mu} - \frac{a_2}{2\nu} H F_{\mu\nu} F^{\mu\nu} - \frac{a_3}{2\nu} H F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{a_4}{2\nu} H V_{\mu} \Box V^{\mu} + \frac{a_5}{2\nu} \Box H V_{\mu} V^{\mu}$$

SM dim-3 operator

dim-5 operators: loop-induced (very small in SM) or, otherwise, non-renormalizable magenta factors with a_i/v are one of a conventions; they could've been written just as $1/\Lambda_i$

In SM: $a_1 = 2$ for ZZ, WW The term vanishes for $\gamma\gamma$ The a_2 term is CP-even. In SM, $a_2 \sim O(10^{-2})$ [it is actually the lowest-order term for $H \rightarrow \gamma \gamma$] The a_3 term is <u>the CP-odd term</u>. In SM, $a_3 \sim O(10^{-11})$ [arises due to CP-violation in the quark sector] The a_4 term is syst another CP-even distinct operator. In SM, $\sim O(10^{-2})$ The a_5 term is experimentally <u>indistinguishable</u> from SM in <u>on-shell studies</u> (important for off-shell)

HVV couplings can be probed in $H \rightarrow VV$ decays and VH and VBF production modes: four-fermion kinematics is sensitive to the HVV coupling structure. This technique was used to establish π^0 parity in 1962: $\pi^0 \rightarrow \gamma^* \gamma^* \rightarrow (ee)(ee)$

When combining, HZZ and HWW processes, one has to assume how a_i^{ZZ} and a_i^{WW} are related to each other

Higgs bosonic (V) coupling structure

H→ZZ→4I

- On-shell analysis only
- WW and ZZ couplings a_i^{WW} and a_i^{ZZ} are related via custodial and SU(2)xSU(1) symmetries:
 - $a_1^{WW} = a_1^{ZZ}$
 - $a_2^{WW} = \cos^2 \theta_W a_2^{ZZ} + \cdots$ (negligible)
 - $a_3^{WW} = \cos^2 \theta_W a_3^{ZZ} + \cdots$ (negligible)
 - ...
- Production modes: VBF tag, VH tag, untagged
- ME-based discriminants

68% CL:
$$a_3^{ZZ} / a_1^{ZZ} = 0.018^{+0.066}_{-0.034}$$

 $a_2^{ZZ} / a_1^{ZZ} = -0.004^{+0.045}_{-0.058}$

Coupling ratios are extracted from ratios f_{a3} and f_{a2} (Approach 2), given in the paper

- red line: SM 0⁺ - blued line: 0⁻

INTRO: Higgs fermionic (f) coupling structure

General lowest-dim Lagrangian for Higgs-fermion interactions:

$$L = -\frac{m_f}{v} \bar{\psi}_f \left(\kappa_f + i\tilde{k}_f \gamma_5\right) \psi_f H$$

• pure CP-odd state:
$$\phi = 90^\circ$$

SM: $\kappa_f = 1$, $\tilde{k}_f = 0$; hence, $\phi = 0$ MSSM: $\phi \approx 0$ nMSSM: ϕ can be large, but < 27° (due to existing experimental constraints)</td>

Higgs fermionic coupling structure: ttH

25 Mar 2020, PRL 125 (2020) 061801 [Run 2]

Final states used:

 $pp \rightarrow ttH \rightarrow (jjb)(jjb)(\gamma\gamma)$ [all-hadronic] $pp \rightarrow ttH \rightarrow (lvb)(jjb)(\gamma\gamma)$ [semi-leptonic]

Building a ME-based discriminant that would account for a whole slew of jet mis-measurements (plus missing neutrino in semi-leptonic channel) is challenging...

Instead, a BDT-based discriminant (D₀₋) is built using CP-even and CP-odd MC models, with the following inputs:

kinematics of the first six jets (in pT) and their b-tag scores

 (φ, η) -direction of the diphoton system

for semi-leptonic channel: lepton multiplicity, leading lepton kinematics

Pure CP-odd ttH coupling is disfavored at 3.2 σ 68% CL: $|\phi| < 35^{\circ}$ 95% CL: $|\phi| < 55^{\circ}$

background is subtracted $|f_{CP}| = \sin^2 \phi$

Higgs fermionic coupling structure: $H\tau\tau$

Final states used: $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$ $\tau_{\mu} \rightarrow \mu^{\pm}\nu\nu(17\%)$ $\tau_{h} \rightarrow \pi^{\pm}\nu(12\%)$ $\rightarrow \rho^{\pm}\nu \rightarrow \pi^{\pm}\pi^{0}\nu(26\%)$ $\rightarrow a_{1}^{\pm}\nu \rightarrow \pi^{\pm}\pi^{0}\pi^{0}\nu(10\%)$ $\rightarrow a_{1}^{\pm}\nu \rightarrow \pi^{\pm}\pi^{\mp}\nu(10\%)$

Signal (H) vs Bkg BDT enhances the signal VBF contribution with two forward-backward jets

Building a ME-based discriminants that would account for jet mis-measurements and missing neutrinos is possible, but challenging...

Distributions of angles between planes set by observable particles from decaying tau leptons (ϕ_{CP}) are sensitive to CP-admixture phase ϕ

Pure CP-odd ttH coupling is disfavored at 3.2 σ 68% CL: $\phi = 4 \pm 17^{\circ}$ 95% CL: $|\phi| < 36^{\circ}$

What about width?

Natural width

1 Jan 2019, PRD 99 (2019) 112003 [Run 1 + 2016 + 2017] From the ratio of off-shell to on-shell rates using $H \rightarrow ZZ \rightarrow 4\ell$

And assuming:

- SM-like amplitude structure for $H \rightarrow ZZ$
- No significant BSM physics in $gg \rightarrow H$ up to $m_{H^*} \sim 1 \text{ TeV}$

From the combination of all on-shell decays

And assuming:

- SM-like amplitude structure for Higgs couplings
- $|\kappa_w|, |\kappa_z| \le 1$ (hard to build a theory violating these conditions)

Looking for explicitly abnormal decay/production modes of the H125 boson

Search for CLFV decays: $H \rightarrow \mu \tau, H \rightarrow e \tau$

17 Mar 2021, HIG-20-009 [Run 2]

Channels used:

- *μτ*_h, *μτ*_e
- **e**τ_h, **e**τ_μ

Very similar to the "nominal" H $\rightarrow \tau\tau$ analysis, except that μ and e

- are prompt
- tend to have larger momenta

BDT is used to separate signal from non-Higgs bkg and $H \rightarrow \tau\tau$

B(H → $\mu\tau$) < 0.15% B(H → $e\tau$) < 0.22%

Search for HH production (non-resonant)

24 Nov 2020, HIG-19-018 [Run 2]

Search strategy:

- "choose" Higgs decays:
 - $H \rightarrow \gamma \gamma$: two photons
 - $H \rightarrow bb$: two jets (with b-tags)
- Categories: untagged and VBF-tagged
- Fit for a 2D-bump in $(m_{\gamma\gamma}, m_{bb})$ at (m_H, m_H)
 - non-Higgs bkg is constrained from sidebands
 - single-Higgs bkg (1D ridges) is derived from simulation

Higgs as a Probe of New Physics, Osaka University, Japan (25-27

Looking for other scalars

Search for $H \rightarrow H(125) h$

20 Mar 2021, HIG-20-014 [Run 2]

Motivated by nMSSM,

in which there are 3 CP-even higgs bosons

If h is predominantly associated with the singlet filed, its coupling to SM particles are strongly suppressed; and so is its direct production. Then, $H \rightarrow H(125)$ h becomes the dominant mechanism for h production.

No signal observed

- Limits on $\sigma \times \mathcal{B}$ as a function of m_H and m_h
- Limits on $(m_H; m_h)$ with all other nMSSM parameters set to maximize $\sigma \times B$

Search for H[±] and H^{±±} in VBF production

20 Mar 2021, HIG-20-017 [Run 2]

SM Higgs Doublet + Higgs Triplet:

- additional H, A, H[±], H^{±±}
- W and Z masses are generated by both HD and HT vevs (s_H=1 implies W mass is fully associated with HT)
- couplings of H[±]WZ, H^{±±}WW are defined by s_H

Analysis:

- Two-jet VBF tag
- Leptonic decays of W and Z
- MET
- Transvers mass m_T^{VV} main discriminant (also m_{ii})

No signal is observed

- Set limits on $\sigma \times \mathcal{B}$ as a function of M
- Constrain (M; s_H) parameter phase space

Summary

Full Run 2 results continue to come

- the H125 Higgs looks more and more SM-like
 - keep looking for small deviations (discovery of CP-violation in the K system is a lesson!)
 - many measurements already challenge the accuracy of theoretical predictions)
- search for explicitly abnormal decays and production modes null results so far
- search additional scalars null results so far

Many more full-Run2 analyses are still to come (including ATLAS+CMS combinations) – stay tuned

Run 3 (2022-2024) – expect to triplicate the integrated luminosity and CMS is being made an even more capable detector!

Backup

Search for H125 \rightarrow invisible

16 Sep 2018, PLB 793 (2019) 520 [Run 1 + 2016]

reinterpretation: $B(H \rightarrow \chi \chi) \Rightarrow \chi$ -nucleon σ

- VBF

monojet

Andrey Korytov (UF)

Search for H125 \rightarrow ZX or XX $\rightarrow (\ell \ell)(\ell \ell)$

May 2020, HIG-19-007 [Run 2]

Search for low-mass dilepton resonances in H125 decays •

model independent Limits on model parameters limits on $\sigma \times B$ 137 fb⁻¹ (13 TeV) CMS Preliminary Expected exclusion μμ)² __ ↑10^{_5} Observed exclusion B(X $\mathbf{x} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ CMS Preliminary 10-3 H₈10^{−6} ¥ 10 20 30 40 50 m_x [GeV]

Search for $H \rightarrow aa \rightarrow (\mu\mu)(\tau\tau)$

18 May 2020, JHEP 08 (2020) 139 [Run 1 + 2016]

H does not have to be H125

 $B(a \rightarrow \mu\mu)$ and $B(a \rightarrow \tau\tau)$ are model driven