

Energetic ion generation at the ultra-high laser intensity frontier

JAI-fest

11 December 2020, Remote e-conference

N. P. Dover^{1,2}, M. Nishiuchi², H. Sakaki², H. F. Lowe², Ko. Kondo², M. A. Alkhimova³, E.J. Ditter¹, O. C.
Ettlinger¹, A. Ya. Faenov^{4,3}, M. Hata⁴, G. S. Hicks¹, N.
Iwata⁴, H. Kiriyama², J. K. Koga², A. Kon², T. Miyahara⁵, Z. Najmudin¹, T. A. Pikuz^{4,3}, A. S. Pirozhkov², A.
Sagisaka², K. Zeil⁶, T. Ziegler⁶, U. Schramm⁶, Y.
Sentoku⁴, Y. Watanabe⁵, M. Kando², K. Kondo²

JAI, Imperial College London, UK, ² KPSI, QST, Japan, ³ RAS, Russia, ⁴ Osaka University, Japan, ⁵ Kyushu University, Japan, ⁶ HZDR, Germany

To optimise acceleration:

- 1) High conversion efficiency of laser to energetic electrons at front surface
- 2) Efficient transport of electrons from front surface to rear surface
- 3) Tight & long confinement of electrons in sheath at rear surface

- High intensity -> high conversion efficiency
- Optimal prepulse driven target pre-expansion

To optimise acceleration:

- 1) High conversion efficiency of laser to energetic electrons at front surface
- 2) Efficient transport of electrons from front surface to rear surface
- 3) Tight & long confinement of electrons in sheath at rear surface

TARGET SHEATH

lan

 \mathcal{S}

2

ASK

 $c \tau_L$

 E_L , (I_L)

Thin target to ensure highest electron density at rear

To optimise acceleration:

- 1) High conversion efficiency of laser to energetic electrons at front surface
- 2) Efficient transport of electrons from front surface to rear surface
- 3) Tight & long confinement of electrons in sheath at rear surface

TARGET SHEATH

an

 \mathcal{S}

8

 $c \tau_L$

 E_L , (I_L)

r

• Suppress pre-expansion of rear surface - high contrast!

To optimise acceleration:

- 1) High conversion efficiency of laser to energetic electrons at front surface
- 2) Efficient transport of electrons from front surface to rear surface
- 3) Tight & long confinement of electrons in sheath at rear surface

TARGET GHEATH

 $c \tau_L$

 E_L , (I_L)

rı

T

 \mathcal{C}

2

Electron heating & dynamics key to understanding sheath acceleration

High intensity laser driven ion sources

- High intensity laser driven ion sources have unique features:
 - Extremely high peak current (ultrashort generation time)
 - **High energy from source** (maximum recorded is ~100 MeV)
- They also have some challenges:
 - Highly divergent
 - Typically broadband energy
- Many applications require high average flux... this means <u>repetitive operation</u>

Applications in science:

- Radiography of high energy density physics experiments
- Generation of warm dense matter
- Injector for next-generation accelerator

Applications in society:

- Ultrafast material response
- Material processing
- Radiobiology/therapy

High field science with J-KAREN-P

- Hybrid OPCPA/ **Ti:Sapphire system**
- ~15 J, ~40 fs at 0.1 Hz at target
- Intensity up to $\approx 5 \times 10^{21}$ W/cm² ($a_0 \approx 50$)

Kansai Photon Science Institute

Lett. 43, 2018

● Tokyo 東京

Co

J-KAREN-P experimental setup

J-KAREN-P *E_L*~10 J (max), 40 fs $r_L \sim 1.5 \,\mu m$ (min), *I_L* ~5 x10²¹ Wcm⁻² Tape target, 5 μ m steel, 45° a.o.i.

J-KAREN-P experimental setup

Electron beam profile -Filtered scintillator screen

creen Ele La

J-KAREN-P $E_L \sim 10$ J (max), 40 fs $r_L \sim 1.5 \ \mu$ m (min), $I_L \sim 5 \ x 10^{21}$ Wcm⁻²

-0 fs

Sakaki et al. RSI **91,** 075116 (2020)

Electron spectrum -Laser axis magnetic spectrometer

Tape target, 5 μ m steel, 45° a.o.i.

J-KAREN-P experimental setup

Electron beam profile -Filtered scintillator screen

075116 (2020)

Electron spectrum -Laser axis magnetic spectrometer

TP spectrometer (low rep.) or time-of-flight (high rep.)

Sakaki et al. RSI 91,

Tape target, 5 μ m steel, 45° a.o.i.

J-KAREN-P

 $E_L \sim 10 \text{ J} (\text{max}), 40 \text{ fs}$

 $r_L \sim 1.5 \ \mu m$ (min),

I_L ~5 x10²¹ Wcm⁻²

Proton beam profile - RCF stack (low rep.)

Proton beam profile differentially filtered scintillator (high rep)

Laser-axis electron beam generated at ultra-high intensities

 Electron beam always directed along laser axis (pointing varies +/- 5°)

Laser-axis electron beam generated at ultra-high intensities

- Electron beam always directed along laser axis (pointing varies +/- 5°)
- Vary intensity by changing laser energy and focusing - Electrons least divergent for small focal spot sizes

Laser-axis electron beam generated at ultra-high intensities

- Electron beam always directed along laser axis (pointing varies +/- 5°)
- Vary intensity by changing laser energy and focusing - Electrons least divergent for small focal spot sizes
- Focal spot dependence of T_e

Sub-ponderomotive electron temperature increase with intensity

Phys. Rev. Lett. 124, 084802 (2020)

- At low intensities (large spot size), electron temperature T_e follows ponderomotive scaling
 - At highest intensities, scaling worsens
- Suppression for smaller spot sizes at same intensity
- Due to the laser focus being too small - electron leaves focal region too quickly to reach high energies

7

Parametric scan to measure proton energy scaling

$n = 1.2 \times 10^{-15} I_{L^{3/4}} [Wcm^{-2}]$ Parametric scan to measure up to max $\eta = 0.5$ proton energy scaling $\tau = \tau_{\rm I}$ Θ_e , T_e from experiment

 $c \tau_L$

Laser

 \mathcal{S}

8

cloud

Electron

8

- Schreiber model shows good agreement for energy scan using realistic conversion efficiencies (~50%)
- Very poor agreement with focal scan!

Schreiber model:

- Calculate static sheath potential from e- parameters
- integrate over time τ_{L}

(See Schreiber et al. PRL 97, 045005 (2006))

Modified sheath acceleration model for large foci

Modified sheath acceleration model for large foci

Modified sheath acceleration model for large foci

J-KAREN-P beamline upgrade: laser energies up to 15 J $E_{L^{\approx 10J}}$

- Improvements in laser near field allowed increase of laser energy to ~15 J
- Increased maximum energy up to ~40 MeV at 0.1 Hz
- Consistent with previous experiment, despite change in laser contrast

Stable proton generation at 0.1 Hz from tape target

- Using 5 µm tape target (steel or titanium)
- Consecutive shots shows fluctuations ~25% of flux
 Enormous peak currents possible,
- Enormous peak currents possible, but beams difficult to transport to applications

Photon Science Institut

Dover *et al.*, High Energ. Dens. Phys. **37**, 100847 (2020)

Summary

- Investigated electron heating and ion acceleration at intensities > 10²¹ W/cm²
- Saturation of electron temperature with ultra-intense tightly focused spots, limiting potential energy gain
- Investigated scaling of sheath acceleration of protons, showing increasing laser energy most effective way to boost energies
- Developed repetitive proton source with energies up to 40 MeV

