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Radiotherapy: Motivation

@ Cancer is the second leading cause of death globally as given by the WHO.
@ Radiotherapy is a well established method of treatment.
o Most treatments use beams of X-rays.
o Recent years make use of beams of protons which have the advantage of the Bragg peak.
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Figure: Schematic of dose distribution for various radiations. Figure taken from Giap et al. [1].

@ The future will see a rise in the number of new cancer cases requiring:

o Development of novel techniques (such as "FLASH”).
o Cost-effective system.
o Improvement in the understanding of radiobiology.
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Radiobiology

@ Treatment planning is based on the ‘Relative Biological Effectiveness’ (RBE).
@ Ratio of dose to produce the same biological response as with photons.
o Dependent on many factors including: energy, ion species, dose, dose rate, tissue type,
and biological endpoint.
@ Proton treatments are planned with an assumption that RBE = 1.1

Dose [Gy]

Figure: Paganetti et al. [2] experimental proton RBE values as a function of dose. Measurements in vitro are open circles and in
vivo are closed circles.
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Laser-hybrid Accelerator for Radiobiological Applications (LhARA)

LhARA will be a unique facility dedicated to radiobiological research.
@ Principle components: :
@ Laser-driven proton and ion source.
@ Capture section with Gabor lenses.
@ Fixed field alternating gradient accelerator (FFA).
@ Two in vitro and one in vivo end station.

@ Staged implementation:

@ Stage 1: In vitro studies with protons up to 15 MeV.
@ Stage 2: In vitro and in vivo studies with protons up to
127 MeV and ions up to 33 MeV/u. Figure: Schematic design of the LhARA facility. [3].
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Figure: Schematic diagram of the stage 1 beam line.
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LhARA Hybrid Approach

@ Laser Source
e High instantaneous flux (> 109) in a short pulse (10 ns — 40 ns).

o Laser pulse triggered at a repetition rate of up to 10 Hz. = Varied time structure.
o Evade instantaneous flux limit due to space charge.

@ Gabor Lens
@ Strong focusing in both planes.

o Reduced magnetic fields compared to high-field solenoids.

@ Fixed Field Alternating Gradient Accelerator (FFA)
e Rapid cycling with repetition rates of 10 Hz — 100 Hz.

e Compactness in size due to combined function magnets.
@ Various beam energies delivered without energy degraders.
e Compactness with multiple ion species acceleration.
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Stage 1: Target Normal Sheath Acceleration (TNSA)

TNSA ion acceleration mechanism:
@ Intense laser pulse (> 108 W/cm?)

@ Interaction with a solid thin foil creates a
cloud of hot electrons.

@ Cloud penetrates foil to the rear. : (unstretched)

@ The induced electric fields ionize and
accelerate ions on the surface.
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Stage 1: Gabor Lenses

@ Focusing a charged particle beam with an electron cloud was first proposed by Gabor
in 1947 [6].

@ An electron cloud can be confined within a lens using a cylindrical anode within a
uniform solenoid field.

@ Focusing effect in both planes with a magnetic field reduced compared to a solenoid.
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Ideal Beam Tracking

@ An ideal Gaussian beam was assumed for the design of the beam line.

@ Plot in red and blue represents the beam tracked in MAD-X and BDSIM respectively
without space charge [7].

@ Plot in green represents the beam tracked in GPT [8] with the inclusion of space
charge.
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Figure: Simulation of an ideal beam evolution. Beam size plotted comparing BDSIM, MAD-X, and GPT for 10* macroparticles
representing a full bunch charge of 10° protons.
Ccar

Imperial College
London

LhARA

8/14



Smilei Simulations

@ PIC code Smilei [9] used to track particles in 2D from laser interaction.

e Laser incident on plastic thin foil at 45°.
e Particles coming out rear of foil tracked.
o Convergence testing to avoid numerical simulation effects.

SMILEI 2D: X-Z Phase Space at 1 ps SMILEI 2D: PX-X Phase Space at 1 ps
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Figure: Transverse phase space of protons coming out back of foil

Figure: Position coordinates of protons coming out back of foil
after 1 ps, colour corresponds to kinetic energy.

after 1 ps, colour corresponds to kinetic energy.
@ Highest energy protons correspond to travelling furthest longitudinally.
o Higher energies than expected are observed in simulation.

@ Higher energy protons come off at an angle due to incident angle of laser.
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Smearing Third Dimension and Beam Line Tracking
Smeared Smilei 2D Sim
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Gabor Lens Prototype and Simulation

@ A prototype Gabor lens was tested with
1 MeV protons at Surrey lon Beam
Centre

o Unexpected ring-like patterns were
observed

Figure: Camera image of six beam spots captured at a phosphor
screen 67 cm downstream of the prototype Gabor lens.

@ Simulations with VSim [10] show
instabilities appear in the lens due to
the initial electron cloud distribution.

o Ring spots produced by instabilities:
@ Rotation of a plasma column around
central axis of lens

@ Electron density with negative radial
gradient s
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Figure: Plot of proton macroparticles hitting screen for a rotating
electron plasma.
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Conclusion

@ LhARA provides opportunity to both develop and prove novel systems and

technologies.

@ R&D effort ongoing which includes:
e End-to-end simulation of a beam from laser target to end station.
e Evaluation of the stability of the Gabor lens with PIC code.
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